HashMap的擴容機制---resize()
雖然在hashmap的原理裡面有這段,但是這個單獨拿出來講rehash或者resize()也是極好的。
什麼時候擴容:當向容器新增元素的時候,會判斷當前容器的元素個數,如果大於等於閾值---即當前陣列的長度乘以載入因子的值的時候,就要自動擴容啦。
擴容(resize)就是重新計算容量,向HashMap物件裡不停的新增元素,而HashMap物件內部的陣列無法裝載更多的元素時,物件就需要擴大陣列的長度,以便能裝入更多的元素。當然Java裡的陣列是無法自動擴容的,方法是使用一個新的陣列代替已有的容量小的陣列,就像我們用一個小桶裝水,如果想裝更多的水,就得換大水桶。
我們分析下resize的原始碼,鑑於JDK1.8融入了紅黑樹,較複雜,為了便於理解我們仍然使用JDK1.7的程式碼,好理解一些,本質上區別不大,具體區別後文再說。
- void resize(int newCapacity) { //傳入新的容量
- Entry[] oldTable = table; //引用擴容前的Entry陣列
- int oldCapacity = oldTable.length;
- if (oldCapacity == MAXIMUM_CAPACITY) { //擴容前的陣列大小如果已經達到最大(2^30)了
- threshold = Integer.MAX_VALUE; //修改閾值為int的最大值(2^31-1),這樣以後就不會擴容了
- return;
- }
-
Entry[] newTable = new
- transfer(newTable); //!!將資料轉移到新的Entry數組裡
- table = newTable; //HashMap的table屬性引用新的Entry陣列
- threshold = (int) (newCapacity * loadFactor);//修改閾值
- }
- void transfer(Entry[] newTable) {
- Entry[] src = table; //src引用了舊的Entry陣列
- int newCapacity = newTable.length;
- for (int j = 0; j < src.length; j++) { //遍歷舊的Entry陣列
- Entry<K, V> e = src[j]; //取得舊Entry陣列的每個元素
- if (e != null) {
- src[j] = null;//釋放舊Entry陣列的物件引用(for迴圈後,舊的Entry陣列不再引用任何物件)
- do {
- Entry<K, V> next = e.next;
- int i = indexFor(e.hash, newCapacity); //!!重新計算每個元素在陣列中的位置
- e.next = newTable[i]; //標記[1]
- newTable[i] = e; //將元素放在陣列上
- e = next; //訪問下一個Entry鏈上的元素
- } while (e != null);
- }
- }
- }
- staticint indexFor(int h, int length) {
- return h & (length - 1);
- }
newTable[i]的引用賦給了e.next,也就是使用了單鏈表的頭插入方式,同一位置上新元素總會被放在連結串列的頭部位置;這樣先放在一個索引上的元素終會被放到Entry鏈的尾部(如果發生了hash衝突的話),這一點和Jdk1.8有區別,下文詳解。在舊陣列中同一條Entry鏈上的元素,通過重新計算索引位置後,有可能被放到了新陣列的不同位置上。
下面舉個例子說明下擴容過程。
這句話是重點----hash(){return key % table.length;}方法,就是翻譯下面的一行解釋:
假設了我們的hash演算法就是簡單的用key mod 一下表的大小(也就是陣列的長度)。
其中的雜湊桶陣列table的size=2, 所以key = 3、7、5,put順序依次為 5、7、3。在mod 2以後都衝突在table[1]這裡了。這裡假設負載因子 loadFactor=1,即當鍵值對的實際大小size 大於 table的實際大小時進行擴容。接下來的三個步驟是雜湊桶陣列 resize成4,然後所有的Node重新rehash的過程。
下面我們講解下JDK1.8做了哪些優化。經過觀測可以發現,我們使用的是2次冪的擴充套件(指長度擴為原來2倍),所以,
經過rehash之後,元素的位置要麼是在原位置,要麼是在原位置再移動2次冪的位置。對應的就是下方的resize的註釋。
- /**
- * Initializes or doubles table size. If null, allocates in
- * accord with initial capacity target held in field threshold.
- * Otherwise, because we are using power-of-two expansion, the
- * elements from each bin must either stay at same index, or move
- * with a power of two offset in the new table.
- *
- * @return the table
- */
- final Node<K,V>[] resize() {
看下圖可以明白這句話的意思,n為table的長度,圖(a)表示擴容前的key1和key2兩種key確定索引位置的示例,圖(b)表示擴容後key1和key2兩種key確定索引位置的示例,其中hash1是key1對應的雜湊與高位運算結果。
元素在重新計算hash之後,因為n變為2倍,那麼n-1的mask範圍在高位多1bit(紅色),因此新的index就會發生這樣的變化:
因此,我們在擴充HashMap的時候,不需要像JDK1.7的實現那樣重新計算hash,只需要看看原來的hash值新增的那個bit是1還是0就好了,是0的話索引沒變,是1的話索引變成“原索引+oldCap”,可以看看下圖為16擴充為32的resize示意圖:
這個設計確實非常的巧妙,既省去了重新計算hash值的時間,而且同時,由於新增的1bit是0還是1可以認為是隨機的,因此resize的過程,均勻的把之前的衝突的節點分散到新的bucket了。這一塊就是JDK1.8新增的優化點。有一點注意區別,JDK1.7中rehash的時候,舊連結串列遷移新連結串列的時候,如果在新表的陣列索引位置相同,則連結串列元素會倒置,但是從上圖可以看出,JDK1.8不會倒置。有興趣的同學可以研究下JDK1.8的resize原始碼,寫的很贊,如下:
1 final Node<K,V>[] resize() {
2 Node<K,V>[] oldTab = table;
3 int oldCap = (oldTab == null) ? 0 : oldTab.length;
4 int oldThr = threshold;
5 int newCap, newThr = 0;
6 if (oldCap > 0) {
7 // 超過最大值就不再擴充了,就只好隨你碰撞去吧
8 if (oldCap >= MAXIMUM_CAPACITY) {
9 threshold = Integer.MAX_VALUE;
10 return oldTab;
11 }
12 // 沒超過最大值,就擴充為原來的2倍
13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14 oldCap >= DEFAULT_INITIAL_CAPACITY)
15 newThr = oldThr << 1; // double threshold
16 }
17 else if (oldThr > 0) // initial capacity was placed in threshold
18 newCap = oldThr;
19 else { // zero initial threshold signifies using defaults
20 newCap = DEFAULT_INITIAL_CAPACITY;
21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22 }
23 // 計算新的resize上限
24 if (newThr == 0) {
25
26 float ft = (float)newCap * loadFactor;
27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28 (int)ft : Integer.MAX_VALUE);
29 }
30 threshold = newThr;
31 @SuppressWarnings({"rawtypes","unchecked"})
32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33 table = newTab;
34 if (oldTab != null) {
35 // 把每個bucket都移動到新的buckets中
36 for (int j = 0; j < oldCap; ++j) {
37 Node<K,V> e;
38 if ((e = oldTab[j]) != null) {
39 oldTab[j] = null;
40 if (e.next == null)
41 newTab[e.hash & (newCap - 1)] = e;
42 else if (e instanceof TreeNode)
43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44 else { // 連結串列優化重hash的程式碼塊
45 Node<K,V> loHead = null, loTail = null;
46 Node<K,V> hiHead = null, hiTail = null;
47 Node<K,V> next;
48 do {
49 next = e.next;
50 // 原索引
51 if ((e.hash & oldCap) == 0) {
52 if (loTail == null)
53 loHead = e;
54 else
55 loTail.next = e;
56 loTail = e;
57 }
58 // 原索引+oldCap
59 else {
60 if (hiTail == null)
61 hiHead = e;
62 else
63 hiTail.next = e;
64 hiTail = e;
65 }
66 } while ((e = next) != null);
67 // 原索引放到bucket裡
68 if (loTail != null) {
69 loTail.next = null;
70 newTab[j] = loHead;
71 }
72 // 原索引+oldCap放到bucket裡
73 if (hiTail != null) {
74 hiTail.next = null;
75 newTab[j + oldCap] = hiHead;
76 }
77 }
78 }
79 }
80 }
81 return newTab;
82 }