python中樸素貝葉斯程式碼的實現
阿新 • • 發佈:2018-12-31
程式碼主要參考機器學習實戰那本書,發現最近老外的書確實比中國人寫的好,由淺入深,程式碼通俗易懂,不多說上程式碼:
#encoding:utf-8 ''' Created on 2015年9月6日 @author: ZHOUMEIXU204 樸素貝葉斯實現過程 ''' #在該演算法中類標籤為1和0,如果是多標籤稍微改動程式碼既可 import numpy as np path=u"D:\\Users\\zhoumeixu204\Desktop\\python語言機器學習\\機器學習實戰程式碼 python\\機器學習實戰程式碼\\machinelearninginaction\\Ch04\\" def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\ ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\ ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\ ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\ ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\ ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet=set([]) for document in dataset: vocabSet=vocabSet|set(document) return list(vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 #vocabList.index() 函式獲取vocabList列表某個元素的位置,這段程式碼得到一個只包含0和1的列表 else: print("the word :%s is not in my Vocabulary!"%word) return returnVec listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) print(len(myVocabList)) print(myVocabList) print(setOfWordseVec(myVocabList, listOPosts[0])) print(setOfWordseVec(myVocabList, listOPosts[3])) #上述程式碼是將文字轉化為向量的形式,如果出現則在向量中為1,若不出現 ,則為0 def trainNB0(trainMatrix,trainCategory): #建立樸素貝葉斯分類器函式 numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 for i in range(numTrainDocs): if trainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom) #change to log p0vect=np.log(p0Num/p0Deom) #change to log return p0vect,p1vect,pAbusive listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWordseVec(myVocabList, postinDoc)) p0V,p1V,pAb=trainNB0(trainMat, listClasses) if __name__!='__main__': print("p0的概況") print (p0V) print("p1的概率") print (p1V) print("pAb的概率") print (pAb) #構建樣本分類器testEntry=['love','my','dalmation'] testEntry=['stupid','garbage']到底屬於哪個類別 def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1=sum(vec2Classify*p1Vec)+np.log(pClass1) p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) if p1>p0: return 1 else: return 0 def testingNB(): listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWordseVec(myVocabList, postinDoc)) p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses)) print("p0V={0}".format(p0V)) print("p1V={0}".format(p1V)) print("pAb={0}".format(pAb)) testEntry=['love','my','dalmation'] thisDoc=np.array(setOfWordseVec(myVocabList, testEntry)) print(thisDoc) print("vec2Classify*p0Vec={0}".format(thisDoc*p0V)) print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb)) testEntry=['stupid','garbage'] thisDoc=np.array(setOfWordseVec(myVocabList, testEntry)) print(thisDoc) print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb)) if __name__=='__main__': testingNB() #使用樸素貝葉斯過濾垃圾郵件 # 1.收集資料:提供文字檔案 # 2.準備資料:講文字檔案見習成詞條向量 # 3.分析資料:檢查詞條確保解析的正確性 # 4.訓練演算法:使用我們之前簡歷的trainNB0()函式 # 5.測試演算法:使用classifyNB(),並且對建一個新的測試函式來計算文件集的錯誤率 # 6.使用演算法,構建一個完整的程式對一組文件進行分類,將錯分的文件輸出到螢幕上 # import re # mySent='this book is the best book on python or M.L. I hvae ever laid eyes upon.' # print(mySent.split()) # regEx=re.compile('\\W*') # print(regEx.split(mySent)) # emailText=open(path+"email\\ham\\6.txt").read() def textParse(bigString): import re listOfTokens=re.split(r'\W*',bigString) return [tok.lower() for tok in listOfTokens if len(tok)>2] def spamTest(): docList=[];classList=[];fullText=[] for i in range(1,26): wordList=textParse(open(path+"email\\spam\\%d.txt"%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList=textParse(open(path+"email\\ham\\%d.txt"%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList=createVocabList(docList) trainingSet=range(50);testSet=[] for i in range(10): randIndex=int(np.random.uniform(0,len(trainingSet))) testSet.append(trainingSet[randIndex]) del (trainingSet[randIndex]) trainMat=[];trainClasses=[] for docIndex in trainingSet: trainMat.append(setOfWordseVec(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam=trainNB0(np.array(trainMat),np.array(trainClasses)) errorCount=0 for docIndex in testSet: wordVector=setOfWordseVec(vocabList, docList[docIndex]) if classifyNB(np.array(wordVector), p0V, p1V, pSpam)!=classList[docIndex]: errorCount+=1 print 'the error rate is :',float(errorCount)/len(testSet) if __name__=='__main__': spamTest()