1. 程式人生 > >Tensorflow學習筆記(8)——input_data.py解析

Tensorflow學習筆記(8)——input_data.py解析

這裡學習一下前面用到的讀取mnist資料庫檔案的程式碼。其實並沒有用到Tensorlfow的東西,但是讀取資料庫檔案是使用Tensorflow程式設計實現功能的基礎,因此歸到Tensorflow的學習筆記中。
這裡需要注意的主要有以下幾點:
1.dense_to_one_hot函式
2.DataSet類中next_batch函式
3.read_data_sets函式
這裡有一個問題:
dense_to_one_hot函式裡

def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) #labels_dense.ravel()將整個陣列展成一個一維陣列 #labels_dense.flat[i]即將labels_dense看成一個一維陣列,取其第i個變數 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
#報錯? return labels_one_hot

註釋有報錯那一行,在整體程式執行的時候並沒有出錯,單獨拿出來就出錯,原因未知,還需要繼續學習。
具體程式碼如下所示,解析如程式碼中註釋所示:

#coding=utf-8

#input_data.py的詳解
#學習讀取資料檔案的方法,以便讀取自己需要的資料庫檔案(二進位制檔案)
"""Functions for downloading and reading MNIST data."""
from __future__ import print_function
import gzip
import os
import urllib
import
numpy SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" #判斷目錄檔案是否存在,不存在則建立該目錄 if not os.path.exists(work_directory): os.mkdir(work_directory) #需要讀取的檔案路徑 filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt) def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data #將稠密標籤向量變成稀疏的標籤矩陣 #eg:若原向量的第i行為3,則對應稀疏矩陣的第i行下標為3的值為1,其餘為0 def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) #labels_dense.ravel()將整個陣列展成一個一維陣列 #labels_dense.flat[i]即將labels_dense看成一個一維陣列,取其第i個變數 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1#報錯? return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1.0 for _ in xrange(784)] fake_label = 0 return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)] start = self._index_in_epoch self._index_in_epoch += batch_size #若當前訓練讀取的index>總體的images數時,則讀取讀取開始的batch_size大小的資料 if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False): class DataSets(object): pass data_sets = DataSets() if fake_data: data_sets.train = DataSet([], [], fake_data=True) data_sets.validation = DataSet([], [], fake_data=True) data_sets.test = DataSet([], [], fake_data=True) return data_sets TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels) data_sets.validation = DataSet(validation_images, validation_labels) data_sets.test = DataSet(test_images, test_labels) return data_sets