在有向無環圖中求最長路徑
阿新 • • 發佈:2019-01-01
// A C++ program to find single source longest distances in a DAG #include <iostream> #include <list> #include <stack> #include <limits.h> #define NINF INT_MIN using namespace std; //圖通過鄰接表來描述。鄰接表中的每個頂點包含所連線的頂點的資料,以及邊的權值。 class AdjListNode { int v; int weight; public: AdjListNode(int _v, int _w) { v = _v; weight = _w;} int getV() { return v; } int getWeight() { return weight; } }; // Class to represent a graph using adjacency list representation class Graph { int V; // No. of vertices’ // Pointer to an array containing adjacency lists list<AdjListNode> *adj; // A function used by longestPath void topologicalSortUtil(int v, bool visited[], stack<int> &Stack); public: Graph(int V); // Constructor // function to add an edge to graph void addEdge(int u, int v, int weight); // Finds longest distances from given source vertex void longestPath(int s); }; Graph::Graph(int V) // Constructor { this->V = V; adj = new list<AdjListNode>[V]; } void Graph::addEdge(int u, int v, int weight) { AdjListNode node(v, weight); adj[u].push_back(node); // Add v to u’s list } // 通過遞迴求出拓撲序列. 詳細描述,可參考下面的連結。 // http://www.geeksforgeeks.org/topological-sorting/ void Graph::topologicalSortUtil(int v, bool visited[], stack<int> &Stack) { // 標記當前頂點為已訪問 visited[v] = true; // 對所有鄰接點執行遞迴呼叫 list<AdjListNode>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) { AdjListNode node = *i; if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, Stack); } // 當某個點沒有鄰接點時,遞迴結束,將該點存入棧中。 Stack.push(v); }
// 根據傳入的頂點,求出到到其它點的最長路徑. longestPath使用了 // topologicalSortUtil() 方法獲得頂點的拓撲序。 void Graph::longestPath(int s) { stack<int> Stack; int dist[V]; // 標記所有的頂點為未訪問 bool *visited = new bool[V]; for (int i = 0; i < V; i++) visited[i] = false; // 對每個頂點呼叫topologicalSortUtil,最終求出圖的拓撲序列存入到Stack中。 for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i, visited, Stack); //初始化到所有頂點的距離為負無窮 //到源點的距離為0 for (int i = 0; i < V; i++) dist[i] = NINF; dist[s] = 0; // 處理拓撲序列中的點 while (Stack.empty() == false) { //取出拓撲序列中的第一個點 int u = Stack.top(); Stack.pop(); // 更新到所有鄰接點的距離 list<AdjListNode>::iterator i; if (dist[u] != NINF) { for (i = adj[u].begin(); i != adj[u].end(); ++i) if (dist[i->getV()] < dist[u] + i->getWeight()) dist[i->getV()] = dist[u] + i->getWeight(); } } // 列印最長路徑 for (int i = 0; i < V; i++) (dist[i] == NINF)? cout << "INF ": cout << dist[i] << " "; }
// Driver program to test above functions int main() { // Create a graph given in the above diagram. Here vertex numbers are // 0, 1, 2, 3, 4, 5 with following mappings: // 0=r, 1=s, 2=t, 3=x, 4=y, 5=z Graph g(6); g.addEdge(0, 1, 5); g.addEdge(0, 2, 3); g.addEdge(1, 3, 6); g.addEdge(1, 2, 2); g.addEdge(2, 4, 4); g.addEdge(2, 5, 2); g.addEdge(2, 3, 7); g.addEdge(3, 5, 1); g.addEdge(3, 4, -1); g.addEdge(4, 5, -2); int s = 1; cout << "Following are longest distances from source vertex " << s <<" \n"; g.longestPath(s); return 0; }
輸出結果: