OpenCV特徵點檢測匹配影象-----新增包圍盒
阿新 • • 發佈:2019-01-01
// OpenCV_sift.cpp : 定義控制檯應用程式的入口點。 // #include "stdafx.h" #include <iostream> #include <vector> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/legacy/legacy.hpp" #include "opencv2/calib3d/calib3d.hpp" using namespace cv; using namespace std; #pragma comment(lib,"opencv_core2410d.lib") #pragma comment(lib,"opencv_highgui2410d.lib") #pragma comment(lib,"opencv_objdetect2410d.lib") #pragma comment(lib,"opencv_imgproc2410d.lib") #pragma comment(lib,"opencv_features2d2410d.lib") #pragma comment(lib,"opencv_legacy2410d.lib") #pragma comment(lib,"opencv_calib3d2410d.lib") int main() { Mat img_1 = imread("1.jpg"); Mat img_2 = imread("2.jpg"); if (!img_1.data || !img_2.data) { cout << "error reading images " << endl; return -1; } ORB orb; vector<KeyPoint> keyPoints_1, keyPoints_2; Mat descriptors_1, descriptors_2; orb(img_1, Mat(), keyPoints_1, descriptors_1); orb(img_2, Mat(), keyPoints_2, descriptors_2); BruteForceMatcher<HammingLUT> matcher; vector<DMatch> matches; matcher.match(descriptors_1, descriptors_2, matches); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for( int i = 0; i < descriptors_1.rows; i++ ) { double dist = matches[i].distance; if( dist < min_dist ) min_dist = dist; if( dist > max_dist ) max_dist = dist; } printf("-- Max dist : %f \n", max_dist ); printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 0.6*max_dist ) //-- PS.- radiusMatch can also be used here. std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_1.rows; i++ ) { if( matches[i].distance < 0.6*max_dist ) { good_matches.push_back( matches[i]); } } Mat img_matches; drawMatches(img_1, keyPoints_1, img_2, keyPoints_2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); // localize the object std::vector<Point2f> obj; std::vector<Point2f> scene; for (size_t i = 0; i < good_matches.size(); ++i) { // get the keypoints from the good matches obj.push_back(keyPoints_1[ good_matches[i].queryIdx ].pt); scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt); } Mat H = findHomography( obj, scene, CV_RANSAC ); // get the corners from the image_1 std::vector<Point2f> obj_corners(4); obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_1.cols, 0); obj_corners[2] = cvPoint( img_1.cols, img_1.rows); obj_corners[3] = cvPoint( 0, img_1.rows); std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); // draw lines between the corners (the mapped object in the scene - image_2) line( img_matches, scene_corners[0] + Point2f( img_1.cols, 0), scene_corners[1] + Point2f( img_1.cols, 0),Scalar(0,255,0)); line( img_matches, scene_corners[1] + Point2f( img_1.cols, 0), scene_corners[2] + Point2f( img_1.cols, 0),Scalar(0,255,0)); line( img_matches, scene_corners[2] + Point2f( img_1.cols, 0), scene_corners[3] + Point2f( img_1.cols, 0),Scalar(0,255,0)); line( img_matches, scene_corners[3] + Point2f( img_1.cols, 0), scene_corners[0] + Point2f( img_1.cols, 0),Scalar(0,255,0)); imshow( "Match", img_matches); cvWaitKey(); return 0; }