梯度方向與等高線方向垂直的理解
阿新 • • 發佈:2019-01-02
1.前言
在講解梯度下降演算法時,經常可以看到下面這張圖(圖片來自Wiki百科):
這張圖後面一般都會再接一句,梯度下降的方向與等高線的切線方向垂直。
最開始的時候對這句話並沒有多想,覺得這理所應當。不過突然有一天回過神來,為什麼梯度下降方向與等高線的方向垂直啊?然後開始仔細考慮了一下這個問題。
2.等高線
看到知乎上的一幅圖,能比較清楚地看出等高線的繪製過程,在此貼上過來。
3.梯度的定義
梯度的概念是為了解決這麼一個問題:
函式在變數空間(變數的維度可能很高)的某一點,沿著那個方向有最大的變化率?
梯度退化到xoy平面的二維空間,其實就是導數的概念。
梯度的定義如下:
需要注意如下幾點:
1.梯度是一個向量,既有大小又有方向。
2.梯度的方向是最大方向導數的方向。
3.梯度的模是方向導數的最大值。
4.梯度方向與等高線切線方向垂直
假設Loss Function為
,該函式為一個三維曲面。該面被平面
所截的曲線方程為
該曲線在xoy平面上的投影是一條曲線,假設該曲線為Q,在xoy平面上該曲線的方程為
不難看出,xoy平面上的曲線Q即為
的等高線。
等高線
上的任意一點p切線處的斜率為
而p點對應的法線的斜率則為:
可以由隱函式求導公式推導得出。
而梯度的表示式為:
則梯度的方向為:
由此可見,梯度的方向與等高線切線的法向量方向是相同的!