[SCOI2007]修車 費用流
阿新 • • 發佈:2019-01-02
題目描述
同一時刻有N位車主帶著他們的愛車來到了汽車維修中心。維修中心共有M位技術人員,不同的技術人員對不同的車進行維修所用的時間是不同的。現在需要安排這M位技術人員所維修的車及順序,使得顧客平均等待的時間最小。
說明:顧客的等待時間是指從他把車送至維修中心到維修完畢所用的時間。
輸入輸出格式
輸入格式:第一行有兩個數M,N,表示技術人員數與顧客數。
接下來n行,每行m個整數。第i+1行第j個數表示第j位技術人員維修第i輛車需要用的時間T。
輸出格式:最小平均等待時間,答案精確到小數點後2位。
輸入輸出樣例
輸入樣例#1: 複製2 2 3 2 1 4輸出樣例#1: 複製
1.50
說明
(2<=M<=9,1<=N<=60), (1<=T<=1000)
假設對於某一個技術工人來說,維修序列為:
w1,w2,w3...,wn;
那麼等待的時間:
T=n*w1+(n-1)*w2+...+wn;
可見費用(消耗的時間)與位置有關;
那麼我們將技術工拆點,拆成 n 個;
然後建邊的時候分別設立不同的費用,最後跑一下最小費用最大流;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 20005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ bool vis[maxn]; int n, m, s, t; int x, y, f, z; int dis[maxn], pre[maxn], last[maxn], flow[maxn]; int maxflow, mincost; struct node { int to, nxt, flow, cost; }edge[maxn<<2]; int head[maxn], cnt; queue<int>q; void addedge(int from, int to, int flow, int cost) { edge[++cnt].to = to; edge[cnt].flow = flow; edge[cnt].cost = cost; edge[cnt].nxt = head[from]; head[from] = cnt; } bool spfa(int s, int t) { memset(dis, 0x7f, sizeof(dis)); memset(flow, 0x7f, sizeof(flow)); ms(vis); q.push(s); vis[s] = 1; dis[s] = 0; pre[t] = -1; while (!q.empty()) { int now = q.front(); q.pop(); vis[now] = 0; for (int i = head[now]; i != -1; i = edge[i].nxt) { if (edge[i].flow > 0 && dis[edge[i].to] > dis[now] + edge[i].cost) { int v = edge[i].to; dis[v] = dis[now] + edge[i].cost; pre[v] = now; last[v] = i; flow[v] = min(flow[now], edge[i].flow); if (!vis[v]) { vis[v] = 1; q.push(v); } } } } return pre[t] != -1; } void mincost_maxflow() { while (spfa(s, t)) { int now = t; maxflow += flow[t]; mincost+=flow[t] * dis[t]; while (now != s) { edge[last[now]].flow -= flow[t]; edge[last[now] ^ 1].flow += flow[t]; now = pre[now]; } } } int main() { //ios::sync_with_stdio(0); memset(head, -1, sizeof(head)); cnt = 1; rdint(m); rdint(n); s = 1000; t = s + 1; for (int i = 1; i <= n; i++)addedge(s, i, 1, 0), addedge(i, s, 0, 0); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int tmp; rdint(tmp); for (int k = 1; k <= n; k++) { addedge(i, j*n + k, 1, tmp*k); addedge(j*n + k, i, 0, -tmp * k); } } } for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++)addedge(i*n + j, t, 1, 0), addedge(t, i*n + j, 0, 0); } mincost_maxflow(); printf("%.2lf\n", 1.0*mincost / n); return 0; }