pytorch 其他深度框架使用tensorflow的tensorboard 視覺化
阿新 • • 發佈:2019-01-04
程式碼來源
首先你需要安裝
tensorflow
pytorch
定義一個logger.py檔案:
import tensorflow as tf
import numpy as np
import scipy.misc
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Logger(object):
def __init__(self, log_dir):
"""Create a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir)
def scalar_summary(self, tag, value, step):
"""Log a scalar variable."""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def image_summary(self, tag, images, step) :
"""Log a list of images."""
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png" )
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
在你想要使用的地方使用:
# 使用方法:
from logger import Logger
logger = Logger('./logs')
# (1) Log the scalar values
info = {
'loss': loss.data[0],
'accuracy': accuracy.data[0]
}
for tag, value in info.items():
logger.scalar_summary(tag, value, step)
# (2) Log values and gradients of the parameters (histogram)
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
logger.histo_summary(tag, to_np(value), step) # from Parameter to np.array
logger.histo_summary(tag+'/grad', to_np(value.grad), step) # from Variable to np.array
# (3) Log the images
info = { # reshape (樣本,h,w)
'images': to_np(img.view(-1, 28, 28)[:10])
}
for tag, images in info.items():
logger.image_summary(tag, images, step)
開啟終端開啟tensorboard:
# shell終端開啟視覺化
tensorbard --logdir='./logs'