吳恩達機器學習筆記第三部分未完成且暫時不打算完成
Linear regression and logistic regression,when u apply them ,sometimes cause the overfitting.
Another term for this is that thisalgorithm has high variance. Failing to generalize to new examples.
Two main options in order to addressoverfitting
The decision boundary is a property of thehypothesis and of the parameters of the hypothesis and not a property of thedata set
相關推薦
吳恩達機器學習筆記第三部分未完成且暫時不打算完成
Linear regression and logistic regression,when u apply them ,sometimes cause the overfitting.Another term for this is that thisalgorithm h
Coursera-AndrewNg(吳恩達)機器學習筆記——第三周
訓練 ros 方便 font 就是 梯度下降 全局最優 用法 郵件 一.邏輯回歸問題(分類問題) 生活中存在著許多分類問題,如判斷郵件是否為垃圾郵件;判斷腫瘤是惡性還是良性等。機器學習中邏輯回歸便是解決分類問題的一種方法。二分類:通常表示為y?{0,1},0:“Negat
吳恩達機器學習筆記_第三週
Logistic Regression邏輯迴歸(分類): 0:Negative Class 1:Positive Class 二元分類問題講起,雖然有迴歸二字,其實為分類演算法,處理離散y值。
【吳恩達機器學習筆記】第三章:線性迴歸回顧
本章是對線性代數的一些簡單回顧,由於之前學過,所以這裡只是簡單的將課程中的一些例子粘過來 矩陣表示 矩陣加法和標量乘法 矩陣向量乘法 用矩陣向量乘法來同時計算多個預測值 矩陣乘法 用矩陣乘法同時計算多個迴歸
Coursera-吳恩達-機器學習-(第5周筆記)Neural Networks——Learning
Week 5 —— Neural Networks : Learning 目錄 一代價函式和反向傳播 1-1 代價函式 首先定義一些我們需要使用的變數: L =網路中的總層數 sl =第l層中的單位數量(不
吳恩達機器學習筆記_第五週
神經網路——模型學習 Cost Function:從邏輯迴歸推廣過來 計算最小值,無論用什麼方法,都需要計算代價和偏導。 網路結構的前向傳播和可向量化的特點: BP演算法: 總結:
【吳恩達機器學習筆記】第五章:多變數線性迴歸
目錄 多特徵下的目標函式 多元梯度下降法 多元梯度下降法中的方法 特徵縮放 選擇學習率 特徵和多項式迴歸 正規方程(區別於迭代法的直接解法) 正規方程在矩陣不可逆的情況下的解決方法
Coursera-吳恩達-機器學習-(第11周筆記)應用例項:photo OCR
Week 11 ——Application Example: Photo OCR 目錄 影象OCR(Optical Character Recognition) 1-1 問題描述 在這一段介紹一種 機器學習的應用例項 照片OCR技術
吳恩達機器學習筆記 —— 5 多變量線性回歸
擬合 進行 image 價格 常用 從表 cnblogs 優化 深度 本篇主要講的是多變量的線性回歸,從表達式的構建到矩陣的表示方法,再到損失函數和梯度下降求解方法,再到特征的縮放標準化,梯度下降的自動收斂和學習率調整,特征的常用構造方法、多維融合、高次項、平方根,最後基
吳恩達機器學習筆記 —— 9 神經網絡學習
滿了 線性回歸 復雜 amp 技術分享 tps 機器 神經網絡 前饋型神經網絡 本章講述了神經網絡的起源與神經元模型,並且描述了前饋型神經網絡的構造。 更多內容參考 機器學習&深度學習 在傳統的線性回歸或者邏輯回歸中,如果特征很多,想要手動組合很多有效的特征是不
吳恩達機器學習筆記(六) —— 支持向量機SVM
次數 括號 圖片 最小 我們 支持向量機svm UNC 意思 strong 主要內容: 一.損失函數 二.決策邊界 三.Kernel 四.使用SVM 一.損失函數 二.決策邊界 對於: 當C非常大時,括號括起來的部分就接近於0,所以就變成了:
吳恩達機器學習筆記 —— 17 推薦系統
htm 特征 問題 這就是 ref 圖片 系統 得出 工業 本章講述了推薦系統相關的知識,比如基於內容的推薦算法、基於協同過濾的推薦算法以及實踐中遇到的問題。 更多內容參考 機器學習&深度學習 推薦系統是機器學習在工業界應用最廣泛的方向,很多電子商務類、咨詢類的
吳恩達機器學習筆記 —— 12 機器學習系統設計
不知道 cor 算法 項目 詞語 樣本 我們 們的 ... http://www.cnblogs.com/xing901022/p/9362339.html 本章主要圍繞機器學習的推薦實踐過程以及評測指標,一方面告訴我們如何優化我們的模型;另一方面告訴我們對於分類的算法
吳恩達機器學習筆記 —— 14 無監督學習
www 最簡 業務 一次 曲線 logs img 下一個 com http://www.cnblogs.com/xing901022/p/9368432.html 本章講述的是第一個無監督的機器學習算法,在無監督的算法中,樣本數據只有特征向量,並沒有標註的y值。比如聚類
吳恩達機器學習筆記 —— 19 應用舉例:照片OCR(光學字符識別)
參考 https ocr 噪聲 也說 字符 www. 定位 cnblogs http://www.cnblogs.com/xing901022/p/9374258.html 本章講述的是一個復雜的機器學習系統,通過它可以看到機器學習的系統是如何組裝起來的;另外也說明了一
吳恩達機器學習筆記 —— 11 應用機器學習的建議
切分 image 們的 正則化 如果 mage 樣本 獲得 建議 http://www.cnblogs.com/xing901022/p/9356783.html 本篇講述了在機器學習應用時,如何進行下一步的優化。如訓練樣本的切分驗證?基於交叉驗證的參數與特征選擇?在訓
吳恩達機器學習筆記
叠代 公式 spec end webkit 測量 ase letter s函數 1 機器學習的含義 (1)Field of study that gives computers the ability to learn without being explicitly p
吳恩達機器學習筆記1-機器學習概述
可能 perf hat 定義 視頻 nbsp 這樣的 spec 學習能力 今天看了視頻的第一章-緒論:初識機器學習(Machine Learning) 1、定義: Arthur Samuel(1959).Machine Learning:Field of study tha
吳恩達機器學習筆記2-監督學習
word ins problems 一個 should regress ssi pri read 英文; Supervised Learning In supervised learning, we are given a data set and already kn
吳恩達機器學習筆記4-單變量線性回歸
alt 方法 bsp 目標 .com 函數 bubuko 機器學習 絕對值 今天看個5個課時的視頻,對假設函數、代價函數、以及梯度下降有了一個大概的了解。 假設函數: 代價函數: 我們的目標就是求得J的最小值 梯度下降:在一個上坡上找一個點,求得這個點周圍的絕對值最大的導數