洛谷 P4317 花神的數論題(組合數)
阿新 • • 發佈:2019-01-05
題面
題解
組合數
列舉有多少個\(1\),求出有多少種數
掃描\(n\)的每一位\(1\), 強制選\(0\)然後組合數算一下有多少種方案
Code
#include<bits/stdc++.h> #define LL long long #define RG register using namespace std; template<class T> inline void read(T &x) { x = 0; RG char c = getchar(); bool f = 0; while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1; while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar(); x = f ? -x : x; return ; } template<class T> inline void write(T x) { if (!x) {putchar(48);return ;} if (x < 0) x = -x, putchar('-'); int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10; for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ; } const int N = 55, Mod = 10000007; LL C[N][N], cnt, a[N]; inline LL Pow(int a, LL b) { LL s = 1; for (LL x = a; b; b >>= 1, x = x*x%Mod) if (b&1) s = s*x%Mod; return s; } int main() { //freopen(".in", "r", stdin); //freopen(".out", "w", stdout); for (int i = 0; i <= 50; i++) C[i][i] = C[i][0] = 1; for (int i = 2; i <= 50; i++) for (int j = 1; j < i; j++) C[i][j] = C[i-1][j-1]+C[i-1][j]; LL n; read(n); for (int i = 50; i >= 0; i--) { if ((n>>i)&1) { for (int j = 1; j <= i; j++) a[j+cnt] += C[i][j];//至少選1個的方案 a[++cnt]++;//不選的方案(必須分開算,不然會有重複計算) } } LL ans = 1; for (int i = 1; i <= 50; i++) ans = ans*Pow(i, a[i])%Mod; printf("%lld\n", ans); return 0; }