CV codes程式碼分類整理合集2
一、特徵提取Feature Extraction:
SIFT [1] [Demo program][SIFT Library] [VLFeat]
PCA-SIFT [2] [Project]
Affine-SIFT [3] [Project]
SURF [4] [OpenSURF] [Matlab Wrapper]
Affine Covariant Features [5] [Oxford project]
MSER [6] [Oxford project
Geometric Blur [7] [Code]
Local Self-Similarity Descriptor [8] [Oxford implementation]
Global and Efficient Self-Similarity [9] [Code]
Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]
GIST [11] [
Shape Context [12] [Project]
Color Descriptor [13] [Project]
Pyramids of Histograms of Oriented Gradients [Code]
Space-Time Interest Points (STIP) [14][Project] [Code]
Boundary Preserving Dense Local Regions [15][Project]
Weighted Histogram[
Histogram-based Interest Points Detectors[Paper][Code]
An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]
Fast Sparse Representation with Prototypes[Project]
Corner Detection [Project]
AGAST Corner Detector: faster than FAST and even FAST-ER[Project]
二、影象分割Image Segmentation:
Normalized Cut [1] [Matlab code]
Gerg Mori’ Superpixel code [2] [Matlab code]
Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]
Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]
OWT-UCM Hierarchical Segmentation [5] [Resources]
Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]
Quick-Shift [7] [VLFeat]
SLIC Superpixels [8] [Project]
Segmentation by Minimum Code Length [9] [Project]
Biased Normalized Cut [10] [Project]
Segmentation Tree [11-12] [Project]
Entropy Rate Superpixel Segmentation [13] [Code]
Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
Random Walks for Image Segmentation[Paper][Code]
Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
Geodesic Star Convexity for Interactive Image Segmentation[Project]
Contour Detection and Image Segmentation Resources[Project][Code]
Biased Normalized Cuts[Project]
Max-flow/min-cut[Project]
Chan-Vese Segmentation using Level Set[Project]
A Toolbox of Level Set Methods[Project]
Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
Improved C-V active contour model[Paper][Code]
A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
Level Set Method Research by Chunming Li[Project]
三、目標檢測Object Detection:
A simple object detector with boosting [Project]
INRIA Object Detection and Localization Toolkit [1] [Project]
Discriminatively Trained Deformable Part Models [2] [Project]
Cascade Object Detection with Deformable Part Models [3] [Project]
Poselet [4] [Project]
Implicit Shape Model [5] [Project]
Viola and Jones’s Face Detection [6] [Project]
Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
Hand detection using multiple proposals[Project]
Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
Discriminatively trained deformable part models[Project]
Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
Image Processing On Line[Project]
Robust Optical Flow Estimation[Project]
Where's Waldo: Matching People in Images of Crowds[Project]
四、顯著性檢測Saliency Detection:
Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]
Frequency-tuned salient region detection [2] [Project]
Saliency detection using maximum symmetric surround [3] [Project]
Attention via Information Maximization [4] [Matlab code]
Context-aware saliency detection [5] [Matlab code]
Graph-based visual saliency [6] [Matlab code]
Saliency detection: A spectral residual approach. [7] [Matlab code]
Segmenting salient objects from images and videos. [8] [Matlab code]
Saliency Using Natural statistics. [9] [Matlab code]
Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
Learning to Predict Where Humans Look [11] [Project]
Global Contrast based Salient Region Detection [12] [Project]
Bayesian Saliency via Low and Mid Level Cues[Project]
Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
五、影象分類、聚類Image Classification, Clustering
Pyramid Match [1] [Project]
Spatial Pyramid Matching [2] [Code]
Locality-constrained Linear Coding [3] [Project] [Matlab code]
Sparse Coding [4] [Project] [Matlab code]
Texture Classification [5] [Project]
Multiple Kernels for Image Classification [6] [Project]
Feature Combination [7] [Project]
SuperParsing [Code]
Large Scale Correlation Clustering Optimization[Matlab code]
Detecting and Sketching the Common[Project]
Self-Tuning Spectral Clustering[Project][Code]
User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]
Filters for Texture Classification[Project]
Multiple Kernel Learning for Image Classification[Project]
SLIC Superpixels[Project]
六、摳圖Image Matting
A Closed Form Solution to Natural Image Matting [Code]
Spectral Matting [Project]
Learning-based Matting [Code]
七、目標跟蹤Object Tracking:
A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]
Object Tracking via Partial Least Squares Analysis[Paper][Code]
Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]
Online Visual Tracking with Histograms and Articulating Blocks[Project]
Incremental Learning for Robust Visual Tracking[Project]
Real-time Compressive Tracking[Project]
Robust Object Tracking via Sparsity-based Collaborative Model[Project]
Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]
Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]
Superpixel Tracking[Project]
Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]
Online Multiple Support Instance Tracking [Paper][Code]
Visual Tracking with Online Multiple Instance Learning[Project]
Object detection and recognition[Project]
Compressive Sensing Resources[Project]
Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]
Tracking-Learning-Detection[Project][OpenTLD/C++ Code]
the HandVu:vision-based hand gesture interface[Project]
八、Kinect:
Kinect toolbox[Project]
OpenNI[Project]
zouxy09 CSDN Blog[Resource]
九、3D相關:
3D Reconstruction of a Moving Object[Paper] [Code]
Shape From Shading Using Linear Approximation[Code]
Combining Shape from Shading and Stereo Depth Maps[Project][Code]
Shape from Shading: A Survey[Paper][Code]
A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]
Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]
A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]
Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]
Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]
Learning 3-D Scene Structure from a Single Still Image[Project]
十、機器學習演算法:
Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class providing interface toANN library]
Random Sampling[code]
Probabilistic Latent Semantic Analysis (pLSA)[Code]
FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]
Fast Intersection / Additive Kernel SVMs[Project]
SVM[Code]
Ensemble learning[Project]
Deep Learning[Net]
Deep Learning Methods for Vision[Project]
Neural Network for Recognition of Handwritten Digits[Project]
Training a deep autoencoder or a classifier on MNIST digits[Project]
THE MNIST DATABASE of handwritten digits[Project]
Ersatz:deep neural networks in the cloud[Project]
Deep Learning [Project]
sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]
Weka 3: Data Mining Software in Java[Project]
Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (餘凱)[Video]
CNN - Convolutional neural network class[Matlab Tool]
Yann LeCun's Publications[Wedsite]
LeNet-5, convolutional neural networks[Project]
Training a deep autoencoder or a classifier on MNIST digits[Project]
Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]
十一、目標、行為識別Object, Action Recognition:
Action Recognition by Dense Trajectories[Project][Code]
Action Recognition Using a Distributed Representation of Pose and Appearance[Project]
Recognition Using Regions[Paper][Code]
2D Articulated Human Pose Estimation[Project]
Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]
Estimating Human Pose from Occluded Images[Paper][Code]
Quasi-dense wide baseline matching[Project]
ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Prpject]
十二、影象處理:
Distance Transforms of Sampled Functions[Project]
The Computer Vision Homepage[Project]
十三、一些實用工具:
EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]
a development kit of matlab mex functions for OpenCV library[Project]
Fast Artificial Neural Network Library[Project]
https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html
Maintained by Jia-Bin Huang
3D Computer Vision: Past, Present, and Future | Talk | 3D Computer Vision | http://www.youtube.com/watch?v=kyIzMr917Rc | Steven Seitz, University of Washington, Google Tech Talk, 2011 | |||||||||||||||||||||||||
Computer Vision and 3D Perception for Robotics | Tutorial | 3D perception | http://www.willowgarage.com/workshops/2010/eccv | Radu Bogdan Rusu, Gary Bradski, Caroline Pantofaru, Stefan Hinterstoisser, Stefan Holzer, Kurt Konolige and Andrea Vedaldi, ECCV 2010 Tutorial | |||||||||||||||||||||||||
3D point cloud processing: PCL (Point Cloud Library) | Tutorial | 3D point cloud processing | http://www.pointclouds.org/media/iccv2011.html | R. Rusu, S. Holzer, M. Dixon, V. Rabaud, ICCV 2011 Tutorial | |||||||||||||||||||||||||
Looking at people: The past, the present and the future | Tutorial | Action Recognition | http://www.cs.brown.edu/~ls/iccv2011tutorial.html | L. Sigal, T. Moeslund, A. Hilton, V. Kruger, ICCV 2011 Tutorial | |||||||||||||||||||||||||
Frontiers of Human Activity Analysis | Tutorial | Action Recognition | http://cvrc.ece.utexas.edu/mryoo/cvpr2011tutorial/ | J. K. Aggarwal, Michael S. Ryoo, and Kris Kitani, CVPR 2011 Tutorial | |||||||||||||||||||||||||
Statistical and Structural Recognition of Human Actions | Tutorial | Action Recognition | https://sites.google.com/site/humanactionstutorialeccv10/ | Ivan Laptev and Greg Mori, ECCV 2010 Tutorial | |||||||||||||||||||||||||
Dense Trajectories Video Description | Code | Action Recognition | http://lear.inrialpes.fr/people/wang/dense_trajectories | H. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011 | |||||||||||||||||||||||||
3D Gradients (HOG3D) | Code | Action Recognition | http://lear.inrialpes.fr/people/klaeser/research_hog3d | A. Klaser, M. Marszałek, and C. Schmid, BMVC, 2008. | |||||||||||||||||||||||||
Spectral Matting | Code | Alpha Matting | http://www.vision.huji.ac.il/SpectralMatting/ | A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008 | |||||||||||||||||||||||||
Learning-based Matting | Code | Alpha Matting | http://www.mathworks.com/matlabcentral/fileexchange/31412 | Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009 | |||||||||||||||||||||||||
Bayesian Matting | Code | Alpha Matting | http://www1.idc.ac.il/toky/CompPhoto-09/Projects/Stud_projects/Miki/index.html | Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001 | |||||||||||||||||||||||||
Closed Form Matting | Code | Alpha Matting | http://people.csail.mit.edu/alevin/matting.tar.gz | A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008. | |||||||||||||||||||||||||
Shared Matting | Code | Alpha Matting | http://www.inf.ufrgs.br/~eslgastal/SharedMatting/ | E. S. L. Gastal and M. M. Oliveira, Computer Graphics Forum, 2010 | |||||||||||||||||||||||||
Introduction To Bayesian Inference | Talk | Bayesian Inference | http://videolectures.net/mlss09uk_bishop_ibi/ | Christopher Bishop, Microsoft Research | |||||||||||||||||||||||||
Modern Bayesian Nonparametrics | Talk | Bayesian Nonparametrics | http://www.youtube.com/watch?v=F0_ih7THV94&feature=relmfu | Peter Orbanz and Yee Whye Teh | |||||||||||||||||||||||||
Theory and Applications of Boosting | Talk | Boosting | http://videolectures.net/mlss09us_schapire_tab/ | Robert Schapire, Department of Computer Science, Princeton University | |||||||||||||||||||||||||
Epipolar Geometry Toolbox | Code | Camera Calibration | http://egt.dii.unisi.it/ | G.L. Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005 | |||||||||||||||||||||||||
Camera Calibration Toolbox for Matlab | Code | Camera Calibration | http://www.vision.caltech.edu/bouguetj/calib_doc/ | http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.html | |||||||||||||||||||||||||
EasyCamCalib | Code | Camera Calibration | http://arthronav.isr.uc.pt/easycamcalib/ | J. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009 | |||||||||||||||||||||||||
Spectral Clustering - UCSD Project | Code | Clustering | http://vision.ucsd.edu/~sagarwal/spectral-0.2.tgz | ||||||||||||||||||||||||||
K-Means - Oxford Code | Code | Clustering | http://www.cs.ucf.edu/~vision/Code/vggkmeans.zip | ||||||||||||||||||||||||||
Self-Tuning Spectral Clustering | Code | Clustering | http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html | ||||||||||||||||||||||||||
K-Means - VLFeat | Code | Clustering | http://www.vlfeat.org/ | ||||||||||||||||||||||||||
Spectral Clustering - UW Project | Code | Clustering | http://www.stat.washington.edu/spectral/ | ||||||||||||||||||||||||||
Color image understanding: from acquisition to high-level image understanding | Tutorial | Color Image Processing | http://www.cat.uab.cat/~joost/tutorial_iccv.html | Theo Gevers, Keigo Hirakawa, Joost van de Weijer, ICCV 2011 Tutorial | |||||||||||||||||||||||||
Sketching the Common | Code | Common Visual Pattern Discovery | http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/SketchCommonCVPR10_v1.1.tar.gz | S. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010 | |||||||||||||||||||||||||
Common Visual Pattern Discovery via Spatially Coherent Correspondences | Code | Common Visual Pattern Discovery | https://sites.google.com/site/lhrbss/home/papers/SimplifiedCode.zip?attredirects=0 | H. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010 | |||||||||||||||||||||||||
Fcam: an architecture and API for computational cameras | Tutorial | Computational Imaging | http://fcam.garage.maemo.org/iccv2011.html | Kari Pulli, Andrew Adams, Timo Ahonen, Marius Tico, ICCV 2011 Tutorial | |||||||||||||||||||||||||
Computational Photography, University of Illinois, Urbana-Champaign, Fall 2011 | Course | Computational Photography | http://www.cs.illinois.edu/class/fa11/cs498dh/ | Derek Hoiem | |||||||||||||||||||||||||
Computational Photography, CMU, Fall 2011 | Course | Computational Photography | http://graphics.cs.cmu.edu/courses/15-463/2011_fall/463.html | Alexei “Alyosha” Efros | |||||||||||||||||||||||||
Computational Symmetry: Past, Current, Future | Tutorial | Computational Symmetry | http://vision.cse.psu.edu/research/symmComp/index.shtml | Yanxi Liu, ECCV 2010 Tutorial | |||||||||||||||||||||||||
Introduction to Computer Vision, Stanford University, Winter 2010-2011 | Course | Computer Vision | http://vision.stanford.edu/teaching/cs223b/ | Fei-Fei Li | |||||||||||||||||||||||||
Computer Vision: From 3D Reconstruction to Visual Recognition, Fall 2012 | Course | Computer Vision | https://www.coursera.org/course/computervision | Silvio Savarese and Fei-Fei Li | |||||||||||||||||||||||||
Computer Vision, University of Texas at Austin, Spring 2011 | Course | Computer Vision | http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html | Kristen Grauman | |||||||||||||||||||||||||
Learning-Based Methods in Vision, CMU, Spring 2012 | Course | Computer Vision | https://docs.google.com/document/pub?id=1jGBn7zPDEaU33fJwi3YI_usWS-U6gpSSJotV_2gDrL0 | Alexei “Alyosha” Efros and Leonid Sigal | |||||||||||||||||||||||||
Introduction to Computer Vision | Course | Computer Vision | http://www.cs.brown.edu/courses/cs143/ | James Hays, Brown University, Fall 2011 | |||||||||||||||||||||||||
Computer Image Analysis, Computer Vision Conferences | Link | Computer Vision | http://iris.usc.edu/information/Iris-Conferences.html | USC | |||||||||||||||||||||||||
CV Papers on the web | Link | Computer Vision | http://www.cvpapers.com/index.html | CVPapers | |||||||||||||||||||||||||
Computer Vision, University of North Carolina at Chapel Hill, Spring 2010 | Course | Computer Vision | http://www.cs.unc.edu/~lazebnik/spring10/ | Svetlana Lazebnik | |||||||||||||||||||||||||
CVonline | Link | Computer Vision | http://homepages.inf.ed.ac.uk/rbf/CVonline/ | CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision | |||||||||||||||||||||||||
Computer Vision: The Fundamentals, University of California at Berkeley, Fall 2012 | Course | Computer Vision | https://www.coursera.org/course/vision | Jitendra Malik | |||||||||||||||||||||||||
Computer Vision, New York University, Fall 2012 | Course | Computer Vision | http://cs.nyu.edu/~fergus/teaching/vision_2012/index.html | Rob Fergus | |||||||||||||||||||||||||
Advances in Computer Vision | Course | Computer Vision | http://groups.csail.mit.edu/vision/courses/6.869/ | Antonio Torralba, MIT, Spring 2010 | |||||||||||||||||||||||||
Annotated Computer Vision Bibliography | Link | Computer Vision | http://iris.usc.edu/Vision-Notes/bibliography/contents.html | compiled by Keith Price | |||||||||||||||||||||||||
Computer Vision, University of Illinois, Urbana-Champaign, Spring 2012 | Course | Computer Vision | http://www.cs.illinois.edu/class/sp12/cs543/ | Derek Hoiem | |||||||||||||||||||||||||
The Computer Vision homepage | Link | Computer Vision | http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html | ||||||||||||||||||||||||||
Computer Vision, University of Washington, Winter 2012 | Course | Computer Vision | http://www.cs.washington.edu/education/courses/cse455/12wi/ | Steven Seitz | |||||||||||||||||||||||||
CV Datasets on the web | Link | Computer Vision | http://www.cvpapers.com/datasets.html | CVPapers | |||||||||||||||||||||||||
The Computer Vision Industry | Link | Computer Vision Industry | http://www.cs.ubc.ca/~lowe/vision.html | David Lowe | |||||||||||||||||||||||||
Compiled list of recognition datasets | Link | Dataset | http://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm | compiled by Kristen Grauman | |||||||||||||||||||||||||
Decision forests for classification, regression, clustering and density estimation | Tutorial | Decision Forests | http://research.microsoft.com/en-us/groups/vision/decisionforests.aspx | A. Criminisi, J. Shotton and E. Konukoglu, ICCV 2011 Tutorial | |||||||||||||||||||||||||
A tutorial on Deep Learning | Talk | Deep Learning | http://videolectures.net/jul09_hinton_deeplearn/ | Geoffrey E. Hinton, Department of Computer Science, University of Toronto | |||||||||||||||||||||||||
Kernel Density Estimation Toolbox | Code | Density Estimation | http://www.ics.uci.edu/~ihler/code/kde.html | ||||||||||||||||||||||||||
Kinect SDK | Code | Depth Sensor | http://www.microsoft.com/en-us/kinectforwindows/ | http://www.microsoft.com/en-us/kinectforwindows/ | |||||||||||||||||||||||||
LLE | Code | Dimension Reduction | http://www.cs.nyu.edu/~roweis/lle/code.html | ||||||||||||||||||||||||||
Laplacian Eigenmaps | Code | Dimension Reduction | http://www.cse.ohio-state.edu/~mbelkin/algorithms/Laplacian.tar | ||||||||||||||||||||||||||
Diffusion maps | Code | Dimension Reduction | http://www.stat.cmu.edu/~annlee/software.htm | ||||||||||||||||||||||||||
ISOMAP | Code | Dimension Reduction | http://isomap.stanford.edu/ | ||||||||||||||||||||||||||
Dimensionality Reduction Toolbox | Code | Dimension Reduction | http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html | ||||||||||||||||||||||||||
Matlab Toolkit for Distance Metric Learning | Code | Distance Metric Learning | http://www.cs.cmu.edu/~liuy/distlearn.htm | ||||||||||||||||||||||||||
Distance Functions and Metric Learning | Tutorial | Distance Metric Learning | http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/ | M. Werman, O. Pele and B. Kulis, ECCV 2010 Tutorial | |||||||||||||||||||||||||
Distance Transforms of Sampled Functions | Code | Distance Transformation | http://people.cs.uchicago.edu/~pff/dt/ | ||||||||||||||||||||||||||
Hidden Markov Models | Tutorial | Expectation Maximization | http://crow.ee.washington.edu/people/bulyko/papers/em.pdf | Jeff A. Bilmes, University of California at Berkeley | |||||||||||||||||||||||||
Edge Foci Interest Points | Code | Feature Detection | http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm | L. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011 | |||||||||||||||||||||||||
Boundary Preserving Dense Local Regions | Code | Feature Detection | http://vision.cs.utexas.edu/projects/bplr/bplr.html | J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011 | |||||||||||||||||||||||||
Canny Edge Detection | Code | Feature Detection | http://www.mathworks.com/help/toolbox/images/ref/edge.html | J. Canny, A Computational Approach To Edge Detection, PAMI, 1986 | |||||||||||||||||||||||||
FAST Corner Detection | Code | Feature Detection | http://www.edwardrosten.com/work/fast.html | E. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006 | |||||||||||||||||||||||||
Groups of Adjacent Contour Segments | Code | Feature Detection; Feature Extraction | http://www.robots.ox.ac.uk/~vgg/share/ferrari/release-kas-v102.tgz | V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007 | |||||||||||||||||||||||||
Maximally stable extremal regions (MSER) - VLFeat | Code | Feature Detection; Feature Extraction | http://www.vlfeat.org/ | J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002 | |||||||||||||||||||||||||
Geometric Blur | Code | Feature Detection; Feature Extraction | http://www.robots.ox.ac.uk/~vgg/software/MKL/ | A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005 | |||||||||||||||||||||||||
Affine-SIFT | Code | Feature Detection; Feature Extraction | http://www.ipol.im/pub/algo/my_affine_sift/ | J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009 | |||||||||||||||||||||||||
Scale-invariant feature transform (SIFT) - Demo Software | Code | Feature Detection; Feature Extraction | http://www.cs.ubc.ca/~lowe/keypoints/ | D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. | |||||||||||||||||||||||||
Affine Covariant Features | Code | Feature Detection; Feature Extraction | http://www.robots.ox.ac.uk/~vgg/research/affine/ | T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, 2008 | |||||||||||||||||||||||||
Scale-invariant feature transform (SIFT) - Library | Code | Feature Detection; Feature Extraction | http://blogs.oregonstate.edu/hess/code/sift/ | D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. | |||||||||||||||||||||||||
Maximally stable extremal regions (MSER) | Code | Feature Detection; Feature Extraction | http://www.robots.ox.ac.uk/~vgg/research/affine/ | J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002 | |||||||||||||||||||||||||
Color Descriptor | Code | Feature Detection; Feature Extraction | http://koen.me/research/colordescriptors/ | K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010 | |||||||||||||||||||||||||
Speeded Up Robust Feature (SURF) - Open SURF | Code | Feature Detection; Feature Extraction | http://www.chrisevansdev.com/computer-vision-opensurf.html | H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006 | |||||||||||||||||||||||||
Scale-invariant feature transform (SIFT) - VLFeat | Code | Feature Detection; Feature Extraction | http://www.vlfeat.org/ | D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. | |||||||||||||||||||||||||
Speeded Up Robust Feature (SURF) - Matlab Wrapper | Code | Feature Detection; Feature Extraction | http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php | H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006 | |||||||||||||||||||||||||
Space-Time Interest Points (STIP) | Code | Feature Detection; Feature Extraction; Action Recognition | http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.1-winlinux.zip; http://www.nada.kth.se/cvap/abstracts/cvap284.html | I. Laptev, On Space-Time Interest Points, IJCV, 2005; I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005 | |||||||||||||||||||||||||
PCA-SIFT | Code | Feature Extraction | http://www.cs.cmu.edu/~yke/pcasift/ | Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004 | |||||||||||||||||||||||||
sRD-SIFT | Code | Feature Extraction | http://arthronav.isr.uc.pt/~mlourenco/srdsift/index.html# | M. Lourenco, J. P. Barreto and A. Malti, Feature Detection and Matching in Images with Radial Distortion, ICRA 2010 | |||||||||||||||||||||||||
Local Self-Similarity Descriptor | Code | Feature Extraction | http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/ | E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007 | |||||||||||||||||||||||||
Pyramids of Histograms of Oriented Gradients (PHOG) | Code | Feature Extraction | http://www.robots.ox.ac.uk/~vgg/research/caltech/phog/phog.zip | A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, CIVR, 2007 | |||||||||||||||||||||||||
BRIEF: Binary Robust Independent Elementary Features | Code | Feature Extraction | http://cvlab.epfl.ch/research/detect/brief/ | M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010 | |||||||||||||||||||||||||
Global and Efficient Self-Similarity | Code | Feature Extraction | http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz | T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010; T. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010 | |||||||||||||||||||||||||
GIST Descriptor | Code | Feature Extraction | http://people.csail.mit.edu/torralba/code/spatialenvelope/ | A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001 | |||||||||||||||||||||||||
Shape Context | Code | Feature Extraction | http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html | S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002 | |||||||||||||||||||||||||
Image and Video Description with Local Binary Pattern Variants | Tutorial | Feature Extraction | http://www.ee.oulu.fi/research/imag/mvg/files/pdf/CVPR-tutorial-final.pdf | M. Pietikainen and J. Heikkila, CVPR 2011 Tutorial | |||||||||||||||||||||||||
Histogram of Oriented Graidents - OLT for windows | Code | Feature Extraction; Object Detection | http://www.computing.edu.au/~12482661/hog.html | N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005 | |||||||||||||||||||||||||
Histogram of Oriented Graidents - INRIA Object Localization Toolkit | Code | Feature Extraction; Object Detection | http://www.navneetdalal.com/software | N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005 | |||||||||||||||||||||||||
Feature Learning for Image Classification | Tutorial | Feature Learning, Image Classification | http://ufldl.stanford.edu/eccv10-tutorial/ | Kai Yu and Andrew Ng, ECCV 2010 Tutorial | |||||||||||||||||||||||||
The Pyramid Match: Efficient Matching for Retrieval and Recognition | Code | Feature Matching; Image Classification | http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm | K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005 | |||||||||||||||||||||||||
Game Theory in Computer Vision and Pattern Recognition | Tutorial | Game Theory | http://www.dsi.unive.it/~atorsell/cvpr2011tutorial/ | Marcello Pelillo and Andrea Torsello, CVPR 2011 Tutorial | |||||||||||||||||||||||||
Gaussian Process Basics | Talk | Gaussian Process | http://videolectures.net/gpip06_mackay_gpb/ | David MacKay, University of Cambridge | |||||||||||||||||||||||||
Hyper-graph Matching via Reweighted Random Walks | Code | Graph Matching | http://cv.snu.ac.kr/research/~RRWHM/ | J. Lee, M. Cho, K. M. Lee. "Hyper-graph Matching via Reweighted Random Walks", CVPR 2011 | |||||||||||||||||||||||||
Reweighted Random Walks for Graph Matching | Code | <