1. 程式人生 > >CV codes程式碼分類整理合集2

CV codes程式碼分類整理合集2



一、特徵提取Feature Extraction:
   SIFT [1] [Demo program][SIFT Library] [VLFeat]
   PCA-SIFT [2] [Project]
   Affine-SIFT [3] [Project]
   SURF [4] [OpenSURF] [Matlab Wrapper]
   Affine Covariant Features [5] [Oxford project]
   MSER [6] [Oxford project

] [VLFeat]
   Geometric Blur [7] [Code]
   Local Self-Similarity Descriptor [8] [Oxford implementation]
   Global and Efficient Self-Similarity [9] [Code]
   Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]
   GIST [11] [
Project
]
   Shape Context [12] [Project]
   Color Descriptor [13] [Project]
   Pyramids of Histograms of Oriented Gradients [Code]
   Space-Time Interest Points (STIP) [14][Project] [Code]
   Boundary Preserving Dense Local Regions [15][Project]
   Weighted Histogram[
Code
]
   Histogram-based Interest Points Detectors[Paper][Code]
   An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]
   Fast Sparse Representation with Prototypes[Project]
   Corner Detection [Project]
   AGAST Corner Detector: faster than FAST and even FAST-ER[Project]
二、影象分割Image Segmentation:
     Normalized Cut [1] [Matlab code]
     Gerg Mori’ Superpixel code [2] [Matlab code]
     Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]
     Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]
     OWT-UCM Hierarchical Segmentation [5] [Resources]
     Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]
     Quick-Shift [7] [VLFeat]
     SLIC Superpixels [8] [Project]
     Segmentation by Minimum Code Length [9] [Project]
     Biased Normalized Cut [10] [Project]
     Segmentation Tree [11-12] [Project]
     Entropy Rate Superpixel Segmentation [13] [Code]
     Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
     Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
     Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
     Random Walks for Image Segmentation[Paper][Code]
     Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
     An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
     Geodesic Star Convexity for Interactive Image Segmentation[Project]
     Contour Detection and Image Segmentation Resources[Project][Code]
     Biased Normalized Cuts[Project]
     Max-flow/min-cut[Project]
     Chan-Vese Segmentation using Level Set[Project]
     A Toolbox of Level Set Methods[Project]
     Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
     Improved C-V active contour model[Paper][Code]
     A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
    Level Set Method Research by Chunming Li[Project]
三、目標檢測Object Detection:
     A simple object detector with boosting [Project]
     INRIA Object Detection and Localization Toolkit [1] [Project]
     Discriminatively Trained Deformable Part Models [2] [Project]
     Cascade Object Detection with Deformable Part Models [3] [Project]
     Poselet [4] [Project]
     Implicit Shape Model [5] [Project]
     Viola and Jones’s Face Detection [6] [Project]
     Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
     Hand detection using multiple proposals[Project]
     Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
     Discriminatively trained deformable part models[Project]
     Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
     Image Processing On Line[Project]
     Robust Optical Flow Estimation[Project]
     Where's Waldo: Matching People in Images of Crowds[Project]
四、顯著性檢測Saliency Detection:
     Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]
     Frequency-tuned salient region detection [2] [Project]
     Saliency detection using maximum symmetric surround [3] [Project]
     Attention via Information Maximization [4] [Matlab code]
     Context-aware saliency detection [5] [Matlab code]
     Graph-based visual saliency [6] [Matlab code]
     Saliency detection: A spectral residual approach. [7] [Matlab code]
     Segmenting salient objects from images and videos. [8] [Matlab code]
     Saliency Using Natural statistics. [9] [Matlab code]
     Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
     Learning to Predict Where Humans Look [11] [Project]
     Global Contrast based Salient Region Detection [12] [Project]
     Bayesian Saliency via Low and Mid Level Cues[Project]
     Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
五、影象分類、聚類Image Classification, Clustering
     Pyramid Match [1] [Project]
     Spatial Pyramid Matching [2] [Code]
     Locality-constrained Linear Coding [3] [Project] [Matlab code]
     Sparse Coding [4] [Project] [Matlab code]
     Texture Classification [5] [Project]
     Multiple Kernels for Image Classification [6] [Project]
     Feature Combination [7] [Project]
     SuperParsing [Code]
     Large Scale Correlation Clustering Optimization[Matlab code]
     Detecting and Sketching the Common[Project]
     Self-Tuning Spectral Clustering[Project][Code]
     User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]
     Filters for Texture Classification[Project]
     Multiple Kernel Learning for Image Classification[Project]
    SLIC Superpixels[Project]
六、摳圖Image Matting
     A Closed Form Solution to Natural Image Matting [Code]
     Spectral Matting [Project]
     Learning-based Matting [Code]
七、目標跟蹤Object Tracking:
     A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]
     Object Tracking via Partial Least Squares Analysis[Paper][Code]
     Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]
     Online Visual Tracking with Histograms and Articulating Blocks[Project]
     Incremental Learning for Robust Visual Tracking[Project]
     Real-time Compressive Tracking[Project]
     Robust Object Tracking via Sparsity-based Collaborative Model[Project]
     Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]
     Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]
     Superpixel Tracking[Project]
     Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]
     Online Multiple Support Instance Tracking [Paper][Code]
     Visual Tracking with Online Multiple Instance Learning[Project]
     Object detection and recognition[Project]
     Compressive Sensing Resources[Project]
     Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]
     Tracking-Learning-Detection[Project][OpenTLD/C++ Code]
     the HandVu:vision-based hand gesture interface[Project]
八、Kinect:
     Kinect toolbox[Project]
     OpenNI[Project]
     zouxy09 CSDN Blog[Resource]
九、3D相關:
     3D Reconstruction of a Moving Object[Paper] [Code]
     Shape From Shading Using Linear Approximation[Code]
     Combining Shape from Shading and Stereo Depth Maps[Project][Code]
     Shape from Shading: A Survey[Paper][Code]
     A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]
     Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]
     A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]
     Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]
     Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]
     Learning 3-D Scene Structure from a Single Still Image[Project]
十、機器學習演算法:
     Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class providing interface toANN library]
     Random Sampling[code]
     Probabilistic Latent Semantic Analysis (pLSA)[Code]
     FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]
     Fast Intersection / Additive Kernel SVMs[Project]
     SVM[Code]
     Ensemble learning[Project]
     Deep Learning[Net]
     Deep Learning Methods for Vision[Project]
     Neural Network for Recognition of Handwritten Digits[Project]
     Training a deep autoencoder or a classifier on MNIST digits[Project]
    THE MNIST DATABASE of handwritten digits[Project]
    Ersatz:deep neural networks in the cloud[Project]
    Deep Learning [Project]
    sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]
    Weka 3: Data Mining Software in Java[Project]
    Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (餘凱)[Video]
    CNN - Convolutional neural network class[Matlab Tool]
    Yann LeCun's Publications[Wedsite]
    LeNet-5, convolutional neural networks[Project]
    Training a deep autoencoder or a classifier on MNIST digits[Project]
    Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]
十一、目標、行為識別Object, Action Recognition:
     Action Recognition by Dense Trajectories[Project][Code]
     Action Recognition Using a Distributed Representation of Pose and Appearance[Project]
     Recognition Using Regions[Paper][Code]
     2D Articulated Human Pose Estimation[Project]
     Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]
     Estimating Human Pose from Occluded Images[Paper][Code]
     Quasi-dense wide baseline matching[Project]
     ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Prpject]
十二、影象處理:
     Distance Transforms of Sampled Functions[Project]
    The Computer Vision Homepage[Project]
十三、一些實用工具:
     EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]
     a development kit of matlab mex functions for OpenCV library[Project]
     Fast Artificial Neural Network Library[Project]





https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html

Maintained by Jia-Bin Huang


<
3D Computer Vision: Past, Present, and Future Talk 3D Computer Vision http://www.youtube.com/watch?v=kyIzMr917Rc Steven Seitz, University of Washington, Google Tech Talk, 2011                                      
Computer Vision and 3D Perception for Robotics Tutorial 3D perception http://www.willowgarage.com/workshops/2010/eccv Radu Bogdan Rusu, Gary Bradski, Caroline Pantofaru, Stefan Hinterstoisser, Stefan Holzer, Kurt Konolige  and Andrea Vedaldi, ECCV 2010 Tutorial  
3D point cloud processing: PCL (Point Cloud Library) Tutorial 3D point cloud processing http://www.pointclouds.org/media/iccv2011.html R. Rusu, S. Holzer, M. Dixon, V. Rabaud, ICCV 2011 Tutorial  
Looking at people: The past, the present and the future Tutorial Action Recognition http://www.cs.brown.edu/~ls/iccv2011tutorial.html L. Sigal, T. Moeslund, A. Hilton, V. Kruger, ICCV 2011 Tutorial  
Frontiers of Human Activity Analysis Tutorial Action Recognition http://cvrc.ece.utexas.edu/mryoo/cvpr2011tutorial/ J. K. Aggarwal, Michael S. Ryoo, and Kris Kitani, CVPR 2011 Tutorial  
Statistical and Structural Recognition of Human Actions Tutorial Action Recognition https://sites.google.com/site/humanactionstutorialeccv10/ Ivan Laptev and Greg Mori, ECCV 2010 Tutorial  
Dense Trajectories Video Description Code Action Recognition http://lear.inrialpes.fr/people/wang/dense_trajectories H. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011  
3D Gradients (HOG3D) Code Action Recognition http://lear.inrialpes.fr/people/klaeser/research_hog3d A. Klaser, M. Marszałek, and C. Schmid, BMVC, 2008.  
Spectral Matting Code Alpha Matting http://www.vision.huji.ac.il/SpectralMatting/ A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008  
Learning-based Matting Code Alpha Matting http://www.mathworks.com/matlabcentral/fileexchange/31412 Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009  
Bayesian Matting Code Alpha Matting http://www1.idc.ac.il/toky/CompPhoto-09/Projects/Stud_projects/Miki/index.html Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001  
Closed Form Matting Code Alpha Matting http://people.csail.mit.edu/alevin/matting.tar.gz A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008.  
Shared Matting Code Alpha Matting http://www.inf.ufrgs.br/~eslgastal/SharedMatting/ E. S. L. Gastal and M. M. Oliveira, Computer Graphics Forum, 2010  
Introduction To Bayesian Inference Talk Bayesian Inference http://videolectures.net/mlss09uk_bishop_ibi/ Christopher Bishop, Microsoft Research  
Modern Bayesian Nonparametrics Talk Bayesian Nonparametrics http://www.youtube.com/watch?v=F0_ih7THV94&feature=relmfu Peter Orbanz and Yee Whye Teh  
Theory and Applications of Boosting Talk Boosting http://videolectures.net/mlss09us_schapire_tab/ Robert Schapire, Department of Computer Science, Princeton University  
Epipolar Geometry Toolbox Code Camera Calibration http://egt.dii.unisi.it/ G.L. Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005  
Camera Calibration Toolbox for Matlab Code Camera Calibration http://www.vision.caltech.edu/bouguetj/calib_doc/ http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.html  
EasyCamCalib Code Camera Calibration http://arthronav.isr.uc.pt/easycamcalib/ J. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009  
Spectral Clustering - UCSD Project Code Clustering http://vision.ucsd.edu/~sagarwal/spectral-0.2.tgz  
K-Means - Oxford Code Code Clustering http://www.cs.ucf.edu/~vision/Code/vggkmeans.zip  
Self-Tuning Spectral Clustering Code Clustering http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html  
K-Means - VLFeat Code Clustering http://www.vlfeat.org/  
Spectral Clustering - UW Project Code Clustering http://www.stat.washington.edu/spectral/  
Color image understanding: from acquisition to high-level image understanding Tutorial Color Image Processing http://www.cat.uab.cat/~joost/tutorial_iccv.html Theo Gevers, Keigo Hirakawa, Joost van de Weijer, ICCV 2011 Tutorial  
Sketching the Common Code Common Visual Pattern Discovery http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/SketchCommonCVPR10_v1.1.tar.gz S. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010  
Common Visual Pattern Discovery via Spatially Coherent Correspondences Code Common Visual Pattern Discovery https://sites.google.com/site/lhrbss/home/papers/SimplifiedCode.zip?attredirects=0 H. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010  
Fcam: an architecture and API for computational cameras Tutorial Computational Imaging http://fcam.garage.maemo.org/iccv2011.html Kari Pulli, Andrew Adams, Timo Ahonen, Marius Tico, ICCV 2011 Tutorial  
Computational Photography, University of Illinois, Urbana-Champaign, Fall 2011 Course Computational Photography http://www.cs.illinois.edu/class/fa11/cs498dh/ Derek Hoiem  
Computational Photography, CMU, Fall 2011 Course Computational Photography http://graphics.cs.cmu.edu/courses/15-463/2011_fall/463.html Alexei “Alyosha” Efros  
Computational Symmetry: Past, Current, Future Tutorial Computational Symmetry http://vision.cse.psu.edu/research/symmComp/index.shtml Yanxi Liu, ECCV 2010 Tutorial  
Introduction to Computer Vision, Stanford University, Winter 2010-2011 Course Computer Vision http://vision.stanford.edu/teaching/cs223b/ Fei-Fei Li  
Computer Vision: From 3D Reconstruction to Visual Recognition, Fall 2012 Course Computer Vision https://www.coursera.org/course/computervision Silvio Savarese and Fei-Fei Li  
Computer Vision, University of Texas at Austin, Spring 2011 Course Computer Vision http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html Kristen Grauman  
Learning-Based Methods in Vision, CMU, Spring 2012 Course Computer Vision https://docs.google.com/document/pub?id=1jGBn7zPDEaU33fJwi3YI_usWS-U6gpSSJotV_2gDrL0 Alexei “Alyosha” Efros and Leonid Sigal  
Introduction to Computer Vision Course Computer Vision http://www.cs.brown.edu/courses/cs143/ James Hays, Brown University, Fall 2011  
Computer Image Analysis, Computer Vision Conferences Link Computer Vision http://iris.usc.edu/information/Iris-Conferences.html USC  
CV Papers on the web Link Computer Vision http://www.cvpapers.com/index.html CVPapers  
Computer Vision, University of North Carolina at Chapel Hill, Spring 2010 Course Computer Vision http://www.cs.unc.edu/~lazebnik/spring10/ Svetlana Lazebnik  
CVonline Link Computer Vision http://homepages.inf.ed.ac.uk/rbf/CVonline/ CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision  
Computer Vision: The Fundamentals, University of California at Berkeley, Fall 2012 Course Computer Vision https://www.coursera.org/course/vision Jitendra Malik  
Computer Vision, New York University, Fall 2012 Course Computer Vision http://cs.nyu.edu/~fergus/teaching/vision_2012/index.html Rob Fergus  
Advances in Computer Vision Course Computer Vision http://groups.csail.mit.edu/vision/courses/6.869/ Antonio Torralba, MIT, Spring 2010  
Annotated Computer Vision Bibliography Link Computer Vision http://iris.usc.edu/Vision-Notes/bibliography/contents.html compiled by Keith Price  
Computer Vision, University of Illinois, Urbana-Champaign, Spring 2012 Course Computer Vision http://www.cs.illinois.edu/class/sp12/cs543/ Derek Hoiem  
The Computer Vision homepage Link Computer Vision http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html  
Computer Vision, University of Washington, Winter 2012 Course Computer Vision http://www.cs.washington.edu/education/courses/cse455/12wi/ Steven Seitz  
CV Datasets on the web Link Computer Vision http://www.cvpapers.com/datasets.html CVPapers  
The Computer Vision Industry Link Computer Vision Industry http://www.cs.ubc.ca/~lowe/vision.html David Lowe  
Compiled list of recognition datasets Link Dataset http://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm compiled by Kristen Grauman  
Decision forests for classification, regression, clustering and density estimation Tutorial Decision Forests http://research.microsoft.com/en-us/groups/vision/decisionforests.aspx A. Criminisi, J. Shotton and E. Konukoglu, ICCV 2011 Tutorial  
A tutorial on Deep Learning Talk Deep Learning http://videolectures.net/jul09_hinton_deeplearn/ Geoffrey E. Hinton, Department of Computer Science, University of Toronto  
Kernel Density Estimation Toolbox Code Density Estimation http://www.ics.uci.edu/~ihler/code/kde.html  
Kinect SDK Code Depth Sensor http://www.microsoft.com/en-us/kinectforwindows/ http://www.microsoft.com/en-us/kinectforwindows/  
LLE Code Dimension Reduction http://www.cs.nyu.edu/~roweis/lle/code.html  
Laplacian Eigenmaps Code Dimension Reduction http://www.cse.ohio-state.edu/~mbelkin/algorithms/Laplacian.tar  
Diffusion maps Code Dimension Reduction http://www.stat.cmu.edu/~annlee/software.htm  
ISOMAP Code Dimension Reduction http://isomap.stanford.edu/  
Dimensionality Reduction Toolbox Code Dimension Reduction http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html  
Matlab Toolkit for Distance Metric Learning Code Distance Metric Learning http://www.cs.cmu.edu/~liuy/distlearn.htm  
Distance Functions and Metric Learning Tutorial Distance Metric Learning http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/ M. Werman, O. Pele and  B. Kulis, ECCV 2010 Tutorial  
Distance Transforms of Sampled Functions Code Distance Transformation http://people.cs.uchicago.edu/~pff/dt/  
Hidden Markov Models Tutorial Expectation Maximization http://crow.ee.washington.edu/people/bulyko/papers/em.pdf Jeff A. Bilmes, University of California at Berkeley  
Edge Foci Interest Points Code Feature Detection http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm L. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011  
Boundary Preserving Dense Local Regions Code Feature Detection http://vision.cs.utexas.edu/projects/bplr/bplr.html J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011  
Canny Edge Detection Code Feature Detection http://www.mathworks.com/help/toolbox/images/ref/edge.html J. Canny, A Computational Approach To Edge Detection, PAMI, 1986  
FAST Corner Detection Code Feature Detection http://www.edwardrosten.com/work/fast.html E. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006  
Groups of Adjacent Contour Segments Code Feature Detection; Feature Extraction http://www.robots.ox.ac.uk/~vgg/share/ferrari/release-kas-v102.tgz V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007  
Maximally stable extremal regions (MSER) - VLFeat Code Feature Detection; Feature Extraction http://www.vlfeat.org/ J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002  
Geometric Blur Code Feature Detection; Feature Extraction http://www.robots.ox.ac.uk/~vgg/software/MKL/ A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005  
Affine-SIFT Code Feature Detection; Feature Extraction http://www.ipol.im/pub/algo/my_affine_sift/ J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009  
Scale-invariant feature transform (SIFT) - Demo Software Code Feature Detection; Feature Extraction http://www.cs.ubc.ca/~lowe/keypoints/ D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.  
Affine Covariant Features Code Feature Detection; Feature Extraction http://www.robots.ox.ac.uk/~vgg/research/affine/ T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, 2008  
Scale-invariant feature transform (SIFT) - Library Code Feature Detection; Feature Extraction http://blogs.oregonstate.edu/hess/code/sift/ D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.  
Maximally stable extremal regions (MSER) Code Feature Detection; Feature Extraction http://www.robots.ox.ac.uk/~vgg/research/affine/ J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002  
Color Descriptor Code Feature Detection; Feature Extraction http://koen.me/research/colordescriptors/ K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010  
Speeded Up Robust Feature (SURF) - Open SURF Code Feature Detection; Feature Extraction http://www.chrisevansdev.com/computer-vision-opensurf.html H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006  
Scale-invariant feature transform (SIFT) - VLFeat Code Feature Detection; Feature Extraction http://www.vlfeat.org/ D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.  
Speeded Up Robust Feature (SURF) - Matlab Wrapper Code Feature Detection; Feature Extraction http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006  
Space-Time Interest Points (STIP) Code Feature Detection; Feature Extraction; Action Recognition http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.1-winlinux.zip; http://www.nada.kth.se/cvap/abstracts/cvap284.html I. Laptev, On Space-Time Interest Points, IJCV, 2005; I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005  
PCA-SIFT Code Feature Extraction http://www.cs.cmu.edu/~yke/pcasift/ Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004  
sRD-SIFT Code Feature Extraction http://arthronav.isr.uc.pt/~mlourenco/srdsift/index.html# M. Lourenco, J. P. Barreto and A. Malti, Feature Detection and Matching in Images with Radial Distortion, ICRA 2010  
Local Self-Similarity Descriptor Code Feature Extraction http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/ E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007  
Pyramids of Histograms of Oriented Gradients (PHOG) Code Feature Extraction http://www.robots.ox.ac.uk/~vgg/research/caltech/phog/phog.zip A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, CIVR, 2007  
BRIEF: Binary Robust Independent Elementary Features Code Feature Extraction http://cvlab.epfl.ch/research/detect/brief/ M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010  
Global and Efficient Self-Similarity Code Feature Extraction http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010; T. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010
GIST Descriptor Code Feature Extraction http://people.csail.mit.edu/torralba/code/spatialenvelope/ A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001  
Shape Context Code Feature Extraction http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002  
Image and Video Description with Local Binary Pattern Variants Tutorial Feature Extraction http://www.ee.oulu.fi/research/imag/mvg/files/pdf/CVPR-tutorial-final.pdf M. Pietikainen and J. Heikkila, CVPR 2011 Tutorial  
Histogram of Oriented Graidents - OLT for windows Code Feature Extraction; Object Detection http://www.computing.edu.au/~12482661/hog.html N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005  
Histogram of Oriented Graidents - INRIA Object Localization Toolkit Code Feature Extraction; Object Detection http://www.navneetdalal.com/software N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005  
Feature Learning for Image Classification Tutorial Feature Learning, Image Classification http://ufldl.stanford.edu/eccv10-tutorial/ Kai Yu and Andrew Ng, ECCV 2010 Tutorial  
The Pyramid Match: Efficient Matching for Retrieval and Recognition Code Feature Matching; Image Classification http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm K. Grauman and T. Darrell.  The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005  
Game Theory in Computer Vision and Pattern Recognition Tutorial Game Theory http://www.dsi.unive.it/~atorsell/cvpr2011tutorial/ Marcello Pelillo and Andrea Torsello, CVPR 2011 Tutorial  
Gaussian Process Basics Talk Gaussian Process http://videolectures.net/gpip06_mackay_gpb/ David MacKay, University of Cambridge  
Hyper-graph Matching via Reweighted Random Walks Code Graph Matching http://cv.snu.ac.kr/research/~RRWHM/ J. Lee, M. Cho, K. M. Lee. "Hyper-graph Matching via Reweighted Random Walks", CVPR 2011  
Reweighted Random Walks for Graph Matching Code