1. 程式人生 > >redis 資料持久化

redis 資料持久化

複製程式碼
# Redis configuration file example

# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are 
case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option
"include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested
in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize no # When running daemonized, Redis writes a pid file in /var/run/redis.pid by # default. You can specify a custom pid file location here. pidfile /var/run/redis.pid # Accept connections on the specified port, default is 6379. # If port 0 is specified Redis will not listen on a TCP socket. port 6379 # TCP listen() backlog. # # In high requests-per-second environments you need an high backlog in order # to avoid slow clients connections issues. Note that the Linux kernel # will silently truncate it to the value of /proc/sys/net/core/somaxconn so # make sure to raise both the value of somaxconn and tcp_max_syn_backlog # in order to get the desired effect. tcp-backlog 511 # By default Redis listens for connections from all the network interfaces # available on the server. It is possible to listen to just one or multiple # interfaces using the "bind" configuration directive, followed by one or # more IP addresses. # # Examples: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for # incoming connections. There is no default, so Redis will not listen # on a unix socket when not specified. # # unixsocket /tmp/redis.sock # unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable) timeout 0 # TCP keepalive. # # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence # of communication. This is useful for two reasons: # # 1) Detect dead peers. # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. tcp-keepalive 0 # Specify the server verbosity level. # This can be one of: # debug (a lot of information, useful for development/testing) # verbose (many rarely useful info, but not a mess like the debug level) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel notice # Specify the log file name. Also the empty string can be used to force # Redis to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes, # and optionally update the other syslog parameters to suit your needs. # syslog-enabled no # Specify the syslog identity. # syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7. # syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT <dbid> where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################ # # Save the DB on disk: # # save <seconds> <changes> # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled # (at least one save point) and the latest background save failed. # This will make the user aware (in a hard way) that data is not persisting # on disk properly, otherwise chances are that no one will notice and some # disaster will happen. # # If the background saving process will start working again Redis will # automatically allow writes again. # # However if you have setup your proper monitoring of the Redis server # and persistence, you may want to disable this feature so that Redis will # continue to work as usual even if there are problems with disk, # permissions, and so forth. stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file. # This makes the format more resistant to corruption but there is a performance # hit to pay (around 10%) when saving and loading RDB files, so you can disable it # for maximum performances. # # RDB files created with checksum disabled have a checksum of zero that will # tell the loading code to skip the check. rdbchecksum yes # The filename where to dump the DB dbfilename dump.rdb # The working directory. # # The DB will be written inside this directory, with the filename specified # above using the 'dbfilename' configuration directive. # # The Append Only File will also be created inside this directory. # # Note that you must specify a directory here, not a file name. dir ./ ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. A few things to understand ASAP about Redis replication. # # 1) Redis replication is asynchronous, but you can configure a master to # stop accepting writes if it appears to be not connected with at least # a given number of slaves. # 2) Redis slaves are able to perform a partial resynchronization with the # master if the replication link is lost for a relatively small amount of # time. You may want to configure the replication backlog size (see the next # sections of this file) with a sensible value depending on your needs. # 3) Replication is automatic and does not need user intervention. After a # network partition slaves automatically try to reconnect to masters # and resynchronize with them. # # slaveof <masterip> <masterport> # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth <master-password> # When a slave loses its connection with the master, or when the replication # is still in progress, the slave can act in two different ways: # # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will # still reply to client requests, possibly with out of date data, or the # data set may just be empty if this is the first synchronization. # # 2) if slave-serve-stale-data is set to 'no' the slave will reply with # an error "SYNC with master in progress" to all the kind of commands # but to INFO and SLAVEOF. # slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against # a slave instance may be useful to store some ephemeral data (because data # written on a slave will be easily deleted after resync with the master) but # may also cause problems if clients are writing to it because of a # misconfiguration. # # Since Redis 2.6 by default slaves are read-only. # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. slave-read-only yes # Replication SYNC strategy: disk or socket. # # ------------------------------------------------------- # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY # ------------------------------------------------------- # # New slaves and reconnecting slaves that are not able to continue the replication # process just receiving differences, need to do what is called a "full # synchronization". An RDB file is transmitted from the master to the slaves. # The transmission can happen in two different ways: # # 1) Disk-backed: The Redis master creates a new process that writes the RDB # file on disk. Later the file is transferred by the parent # process to the slaves incrementally. # 2) Diskless: The Redis master creates a new process that directly writes the # RDB file to slave sockets, without touching the disk at all. # # With disk-backed replication, while the RDB file is generated, more slaves # can be queued and served with the RDB file as soon as the current child producing # the RDB file finishes its work. With diskless replication instead once # the transfer starts, new slaves arriving will be queued and a new transfer # will start when the current one terminates. # # When diskless replication is used, the master waits a configurable amount of # time (in seconds) before starting the transfer in the hope that multiple slaves # will arrive and the transfer can be parallelized. # # With slow disks and fast (large bandwidth) networks, diskless replication # works better. repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay # the server waits in order to spawn the child that trnasfers the RDB via socket # to the slaves. # # This is important since once the transfer starts, it is not possible to serve # new slaves arriving, that will be queued for the next RDB transfer, so the server # waits a delay in order to let more slaves arrive. # # The delay is specified in seconds, and by default is 5 seconds. To disable # it entirely just set it to 0 seconds and the transfer will start ASAP. repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change # this interval with the repl_ping_slave_period option. The default value is 10 # seconds. # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates # slave data when slaves are disconnected for some time, so that when a slave # wants to reconnect again, often a full resync is not needed, but a partial # resync is enough, just passing the portion of data the slave missed while # disconnected. # # The bigger the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # # A value of 0 means to never release the backlog. # # repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output. # It is used by Redis Sentinel in order to select a slave to promote into a # master if the master is no longer working correctly. # # A slave with a low priority number is considered better for promotion, so # for instance if there are three slaves with priority 10, 100, 25 Sentinel will # pick the one with priority 10, that is the lowest. # # However a special priority of 0 marks the slave as not able to perform the # role of master, so a slave with priority of 0 will never be selected by # Redis Sentinel for promotion. # # By default the priority is 100. slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEE that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH <PASSWORD> before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # # requirepass foobared # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 10000 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory <bytes> # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy volatile-lru # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can select as well the sample # size to check. For instance for default Redis will check three keys and # pick the one that was used less recently, you can change the sample size # using the following configuration directive. # # maxmemory-samples 3 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead of waiting for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis # startup process, when the AOF data gets loaded back into memory. # This may happen when the system where Redis is running # crashes, especially when an ext4 filesystem is mounted without the # data=ordered option (however this can't happen when Redis itself # crashes or aborts but the operating system still works correctly). # # Redis can either exit with an error when this happens, or load as much # data as possible (the default now) and start if the AOF file is found # to be truncated at the end. The following option controls this behavior. # # If aof-load-truncated is set to yes, a truncated AOF file is loaded and # the Redis server starts emitting a log to inform the user of the event. # Otherwise if the option is set to no, the server aborts with an error # and refuses to start. When the option is set to no, the user requires # to fix the AOF file using the "redis-check-aof" utility before to restart # the server. # # Note that if the AOF file will be found to be corrupted in the middle # the server will still exit with an error. This option only applies when # Redis will try to read more data from the AOF file but not enough bytes # will be found. aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceeds the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write command was # already issued by the script but the user doesn't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations # at runtime in order to collect data related to possible sources of # latency of a Redis instance. # # Via the LATENCY command this information is available to the user that can # print graphs and obtain reports. # # The system only logs operations that were performed in a time equal or # greater than the amount of milliseconds specified via the # latency-monitor-threshold configuration directive. When its value is set # to zero, the latency monitor is turned off. # # By default latency monitoring is disabled since it is mostly not needed # if you don't have latency issues, and collecting data has a performance # impact, that while very small, can be measured under big load. Latency # monitoring can easily be enalbed at runtime using the command # "CONFIG SET latency-monitor-threshold <milliseconds>" if needed. latency-monitor-threshold 0 ############################# Event notification ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/notifications # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH [email protected]__:foo del # PUBLISH [email protected]__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with [email protected]<db>__ prefix. # E Keyevent events, published with [email protected]<db>__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # of zero or multiple characters. The empty string means that notifications # are disabled. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name [email protected]__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happen to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000

相關推薦

redis學習之三】Redis資料持久化

RDB     RDB持久化功能會將redis記憶體快照儲存到磁碟中,避免資料意外丟失,所生成的RDB檔案是一個經過壓縮的二進位制檔案,通過該檔案可以還原生成RDB檔案時的資料庫狀態。     RDB檔案會在伺服器啟動時自動載入,而我們

Redis資料持久化機制AOF原理分析二

/* A background append only file rewriting (BGREWRITEAOF) terminated its work. * Handle this. */ void backgroundRewriteDoneHandler(int exitcode, int bysig

redis 資料持久化

# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so for

使用快照和AOF將Redis資料持久化到硬碟中

前言 我們知道Redis是一款記憶體伺服器,就算我們對自己的伺服器足夠的信任,不會出現任何軟體或者硬體的故障,但也會有可能出現突然斷電等情況,造成Redis伺服器中的資料失效。因此,我們需要向傳統的關係型資料庫一樣對資料進行備份,將Redis在記憶體中的資料持

Redis資料持久化的兩種方式

一、RDB(Redis DataBase) 1.1什麼是RDB 在指定的時間間隔內將記憶體中的資料集快照寫入磁碟,也就是Snapshot 快照,它恢復時是將快照檔案直接讀到記憶體裡,這個快照檔案預設是dump.rdb ,可以在redis.conf 中檢視與

進階的Redis資料持久化RDB與AOF

大家都知道,Redis之所以效能好,讀寫快,是因為Redis是一個記憶體資料庫,它的操作都幾乎基於記憶體。但是記憶體型資料庫有一個很大的弊端,就是當資料庫程序崩潰或系統重啟的時候,如果記憶體資料不儲存的話,裡面的資料就會丟失不見了。這樣的資料庫並不是一個可靠的資料庫。 所以資料的持久化是記憶體型資料庫的重中

資料學習之路101-redis持久化詳解及主從複製

接下來我們配置一下主從結構的星型模型: 首先將配置檔案複製3份, 然後修改主節點的配置檔案: 首先關閉RDB: 然後關閉AOF: 修改第二個配置檔案: 先修改埠,他不能和主節點的埠衝突: 為了區分是哪個節點打的日誌,我們還需要

redis介紹、redis安裝、redis持久化redis資料型別

一:redis介紹 Redis和Memcached類似,也屬於k-v資料儲存Redis官網redis.io, 當前最新穩定版4.0.1支援更多value型別,除了和string外,還支援hash、lists(連結串列)、sets(集合)和sorted sets(有序集合)redis使用了兩種檔案格式:全量資

redis學習——資料持久化

一、概述       Redis的強大效能很大程度上都是因為所有資料都是儲存在記憶體中的,然而當Redis重啟後,所有儲存在記憶體中的資料將會丟失,在很多情況下是無法容忍這樣的事情的。所以,我們需要將記憶體中的資料持久化!典型的需要持久化資料的場景如下:

BloomFilter(大資料去重)+Redis持久化)策略

之前在重構一套文章爬蟲系統時,其中有塊邏輯是根據文章標題去重,原先去重的方式是,插入文章之前檢查待插入文章的標題是否在ElasticSearch中存在,這無疑加重了ElasticSearch的負擔也勢必會影響程式的效能! BloomFilter演算法 簡介:布隆過濾器實際上

redis主從同步和資料持久化詳解

一 主從同步 1 主從複製工作原理: –slave向master傳送sync命令 –master啟動後臺存檔程序,並收集所有修改資料命令 //處理客戶端請求的程序與處理從伺服器請求同步的程序不一樣 –master完成後臺存檔後,傳送整個資料檔案到slave –slave接受資料檔案,載入到記

redis筆記2--資料持久化和叢集

資料持久化 資料持久化的用處: 1.恢復資料。 2.減少資料的運算,如:從關係型資料庫載入資料到redis後,redis服務重啟時不需要在去關係型資料庫獲取資料,直接讀取硬碟上的備份即可

Redis持久化資料相關的知識

Redis知識點 一、redis的瞭解 1.redis是一種記憶體型、非關係型資料庫; 2.redis的資料會儲存到硬碟上; 3.Redis(持久化)儲存資料一種採用的是rdb(快照的形式進行資料的儲存,快照是採用一種機制儲存,這種機制你可以自己在redis的配置檔案中進行配置,

Redis資料型別與持久化方式

Redis是一個開源的記憶體儲存的資料結構資料庫,它可以作為資料庫,快取,訊息佇列。支援多種資料格式。和mc相比具有資料持久化的能力。並能通過哨兵和叢集提高可用性。 它具有以下資料型別:   字串型別 在Redis裡面採用的是SDS來封裝char[]的,這個也是redi

Redis和Memcached的區別(資料型別、記憶體管理、資料持久化、叢集管理)

常用命令:sadd/spop/smembers/sunion等;應用場景:Redis set對外提供的功能與list類似是一個列表的功能,特殊之處在於set是可以自動排重的,當你需要儲存一個列表資料,又不希望出現重複資料時,set是一個很好的選擇,並且set提供了判斷某個成員是否在一個set集合內的重要介面

資料求索(14): Redis持久化詳解

大資料求索(14): Redis的持久化詳解 一、Redis的持久化 Redis提供了兩種不同的持久化方式: RDB(Redis DataBase)持久化,以指定的時間間隔對資料集進行時間點快照的儲存 AOF(Append only File)持久化,以日誌的形

redis啟動載入過程、資料持久化

https://www.cnblogs.com/cuijl/p/7992433.html   付出才有回報,敢於嘗試才能成功。   部落格園 首頁 新隨筆 聯絡 管理 訂閱 隨筆- 89  文章- 0&n

Redis資料持久化方法

工作中經常會遇到 Redis 資料庫相關的使用操作,因為其將資料儲存在記憶體中的緣故,其資料的讀寫效率要遠遠高於資料庫等方式的讀寫。但也因為資料儲存在記憶體中,如果機器意外關機,就會導致資料的丟失。為了避免資料丟失造成的損失,因此就需要對 Redis 中的資料進

docker-compose一鍵部署redis一主二從三哨兵模式(含密碼,資料持久化)

本篇基於centos7伺服器進行部署開發 程式碼地址:https://github.com/chukaihong/docker-compose.喜歡的點個start 一.拉取redis映象,使用如下命令 docker pull redis 1.檢視映象是否拉取成功,使用如下命令 do

redis資料結構、持久化、快取淘汰策略

Redis 單執行緒高效能,它所有的資料都在記憶體中,所有的運算都是記憶體級別的運算,而且單執行緒避免了多執行緒的切換效能損耗問題。redis利用epoll來實現IO多路複用,將連線資訊和事件放到佇列中,依次放到檔案事件分派器,事件分派器將事件分發給事件處理器。   1.Redis資料結構及簡單操作