kafka 指定partition生產,消費
阿新 • • 發佈:2019-01-06
kafka指定partition生產消費
在實際的業務中,特別是涉及到指定任務是否結束,任務對應訊息是否消費完畢時,單純指定topic消費,由kafka自動分配partition已經無法滿足我們的實際需求了,這時我們就需要指定partition進行生產與消費。閒話少說,下面我們通過程式碼來詳細描述生產者與消費者的配置。
producer程式碼
注意:producer程式碼中我們需要兩個類,一個時指定partitioner的類,一個為真正的producer類.
指定partitioner的類
package com.wshare.common;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import java.util.Properties;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingDeque;
/**
* Created by flyfy on 2017/11/15.
*/
public class KafkaPartitionerProducerUtil {
private final Producer<String, String> producer;
private final String topic = "test";
private final String kafkaQueueHost = "1.1.1.1";
private final int kafkaQueuePort = 9092;
private Properties props = new Properties();
private BlockingQueue<KeyedMessage<String, String>> blockingQueue = new LinkedBlockingDeque<KeyedMessage<String, String>>();
public KafkaPartitionerProducerUtil() {
props.put("serializer.class", "kafka.serializer.StringEncoder");
props.put("metadata.broker.list", kafkaQueueHost + ":" + kafkaQueuePort);
props.put("partitioner.class","com.wshare.common.CidPartitioner");
this.producer = new Producer<String, String>(new ProducerConfig(props));
}
public void send(String key,String msg) {
producer.send(new KeyedMessage<String, String>(topic,key,msg));
}
}
producer類
package com.wshare.common;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import java.util.Properties;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingDeque;
/**
* Created by flyfy on 2017/11/15.
*/
public class KafkaPartitionerProducerUtil {
private final Producer<String, String> producer;
private final String topic = "test";
private final String kafkaQueueHost = "1.1.1.1";
private final int kafkaQueuePort = 9092;
private Properties props = new Properties();
private BlockingQueue<KeyedMessage<String, String>> blockingQueue = new LinkedBlockingDeque<KeyedMessage<String, String>>();
public KafkaPartitionerProducerUtil() {
props.put("serializer.class", "kafka.serializer.StringEncoder");
props.put("metadata.broker.list", kafkaQueueHost + ":" + kafkaQueuePort);
props.put("partitioner.class","com.wshare.common.CidPartitioner");
this.producer = new Producer<String, String>(new ProducerConfig(props));
}
public void send(String key,String msg) {
producer.send(new KeyedMessage<String, String>(topic,key,msg));
}
}
注意props.put(“partitioner.class”,”com.wshare.common.CidPartitioner”)即指定我們定義好的partitioner類
consumer程式碼
package com.lyf.scandatatofile.Utils;
import kafka.cluster.Partition;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import java.io.File;
import java.io.FileWriter;
import java.text.SimpleDateFormat;
import java.util.*;
import java.util.concurrent.BlockingQueue;
/**
* Created by flyfy on 2017/10/7.
*/
public class KafkaConsumerUtil {
final String topic = "test";
final Properties props = new Properties();
public void execute(String groupid, BlockingQueue<String> bq) {
props.put("bootstrap.servers", "1.1.1.1:9092");
props.put("group.id", "test");
props.put("auto.offset.reset", "earliest");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
//consumer.subscribe(Arrays.asList("IP_REGISTER_yangkai"));
consumer.assign(Arrays.asList(new TopicPartition("kafka.wshare.match_meta_data.topic",0)));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.println("offset"+record.offset()+"key"
+record.key()+"value"+record.value());
}
}
}
消費者有一處需要特別注意consumer.subscribe(Arrays.asList(“IP_REGISTER_yangkai”))與consumer.assign(Arrays.asList(new TopicPartition(“kafka.wshare.match_meta_data.topic”,0)))對kafka而言是互斥的,二者只能指定其一,前者指定消費模式為指定topic,由kafka指定partition分配策略,後者指定消費模式為指定partition,由使用者自定義partition分配策略。