1. 程式人生 > >Spark Streaming +Kafka 使用底層API直接讀取Kafka的Partition資料,手動更新Offset到Zookeeper叢集

Spark Streaming +Kafka 使用底層API直接讀取Kafka的Partition資料,手動更新Offset到Zookeeper叢集

      Spark Streaming  +Kafka 使用底層API直接讀取Kafka的Partition資料,正常Offset儲存在CheckPoint中。但是這樣無法實現Kafka監控工具對Kafka的監控,所以手動更新Offset到Zookeeper叢集中

相關原始碼簡單介紹:

1:TopicAndPartition是對 topic和partition的id的封裝的一個樣例類

  case class TopicAndPartition(topic: String, partitionId: Int)

2:OffsetRange 是對topic name,partition id,fromOffset(當前消費的開始偏移),untilOffset(當前消費的結束偏移)的封裝。所以OffsetRange 包含資訊有:topic名字,分割槽Id,開始偏移,結束偏移。
 /**
   *
   * @param topic Kafka topic name
   * @param partition Kafka partition id
   * @param fromOffset inclusive starting offset
   * @param untilOffset exclusive ending offset
   */
final class OffsetRange private(val topic: String, val partition: Int, val fromOffset: Long, val untilOffset: Long) extends Serializable


3:程式碼實現:
object Iteblog {

  val brokerAddress = "http://www.iteblog.com:9092"

  val groupID="testGroup"

  val kafkaParams = Map[String, String](
    "metadata.broker.list" -> brokerAddress,
    "group.id" -> "iteblog")

  def main(args: Array[String]) {

    val sparkConf = new SparkConf().setAppName("Test")
    sparkConf.set("spark.kryo.registrator", "utils.CpcKryoSerializer")
    val sc = new SparkContext(sparkConf)


    val ssc = new StreamingContext(sc, Seconds(2))
    val topicsSet = Set("iteblog")

    val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
    messages.foreachRDD(rdd => {
      // 把RDD轉成HasOffsetRanges型別(KafkaRDD extends HasOffsetRanges)
      // OffsetRange 說明:Represents a range of offsets from a single Kafka TopicAndPartition.
      // OffsetRange 說明: Instances of this class can be created with `OffsetRange.create()`.
      val offsetsList: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
//     offsetRanges 的實現程式碼(KafkaRDD中):tp:TopicAndPartition,fo:fromOffset
//      val offsetRanges = fromOffsets.map { case (tp, fo) =>
//        val uo = untilOffsets(tp)
//        OffsetRange(tp.topic, tp.partition, fo, uo.offset)
//      }.toArray

      val kc = new KafkaCluster(kafkaParams)
      for (offsets <- offsetsList) {
       //TopicAndPartition 主構造引數第一個是topic,第二個是 partition id
        val topicAndPartition = TopicAndPartition("iteblog", offsets.partition) //offsets.partition表示的是Kafka partition id
        val o = kc.setConsumerOffsets(groupID, Map((topicAndPartition, offsets.untilOffset)))//offsets.untilOffset:是
        if (o.isLeft) {
          println(s"Error updating the offset to Kafka cluster: ${o.left.get}")
        }
      }
    })

    ssc.start()
    ssc.awaitTermination()
    ssc.stop()
  }
}

核心程式碼講解:
使用KafkaUtils的createDirectStream方法,呼叫底層API直接消費Kafka Partition的資料(Kafka Partition和RDD Partition 一一對應)。createDirectStream返回值是DStream,底層是RDD。
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)

messages.foreachRDD 是對messages底層RDD計算其偏移範圍。
KafkaRDD和HasOffsetRanges關係(構造引數和泛型省略,具體見原始碼):
KafkaRDD extends RDD[R](sc, Nil) with Logging with HasOffsetRanges

//rdd是messages.foreachRDD中的變數,rdd其型別是KafkaRDD,但是由於多型的原因rdd實際上不是KafkaRDD型別,而是RDD型別,所以需要向下轉型為HasOffsetRanges,呼叫offsetRanges方法。(回憶OffsetRange是對什麼的封裝?答案:topic名字,分割槽Id,開始偏移,結束偏移。
val offsetsList: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
offsetRanges 的實現程式碼(KafkaRDD中):tp:TopicAndPartition,fo:fromOffset
val offsetRanges = fromOffsets.map { case (tp, fo) =>
   val uo = untilOffsets(tp)
   OffsetRange(tp.topic, tp.partition, fo, uo.offset)
}.toArray

KafkaCluster 完成對更新偏移到zookeeper叢集的封裝工具類。
val kc = new KafkaCluster(kafkaParams)

offsetRanges陣列遍歷:setConsumerOffsets是KafkaCluster 
強調:OffsetRange是對什麼的封裝?答案:topic名字,分割槽Id,開始偏移,結束偏移
for (offsets <- offsetsList) {
    //offsets.untilOffset是結束偏移量
val o = kc.setConsumerOffsets(groupID, Map((topicAndPartition, offsets.untilOffset))) if (o.isLeft) { println(s"Error updating the offset to Kafka cluster: ${o.left.get}") } } 以上是完成對createDirectStream建立的DStream中的一個底層RDD完成偏移的更新zookeeper叢集,通過foreachRDD完成對所有RDD的更新!!!至此已經完成RDD偏移的計算以及更新,但是具體的更新方法?在KafkaCluster中。接下來看KafkaCluster程式碼。
直接上程式碼:
package org.apache.spark.streaming.kafka

//使用org.apache.spark.streaming.kafka的原因:  private[spark] object SimpleConsumerConfig限制只在spark包中使用!

import kafka.api.OffsetCommitRequest
import kafka.common.{ErrorMapping, OffsetMetadataAndError, TopicAndPartition}
import kafka.consumer.SimpleConsumer
import org.apache.spark.SparkException
import org.apache.spark.streaming.kafka.KafkaCluster.SimpleConsumerConfig
import scala.collection.mutable.ArrayBuffer
import scala.util.Random
import scala.util.control.NonFatal

class KafkaCluster(val kafkaParams: Map[String, String]) extends Serializable {                 //Err是型別ArrayBuffer[Throwable]別名   type Err = ArrayBuffer[Throwable]

   @transient private var _config: SimpleConsumerConfig = null

   def config: SimpleConsumerConfig = this.synchronized {
     if (_config == null) {
       //SimpleConsumerConfig的apply方法部分程式碼:
       //val brokers = kafkaParams.get("metadata.broker.list").orElse(kafkaParams.get("bootstrap.servers"))
       //所以kafkaParams必須包含key=metadata.broker.list或者bootstrap.servers對應的Value
       _config = SimpleConsumerConfig(kafkaParams)
     }
     _config
   }

  /**
    *
    * @param groupId: String
    * @param offsets: Map[TopicAndPartition, Long]
    * @return
    */
   def setConsumerOffsets(groupId: String,
                          offsets: Map[TopicAndPartition, Long]
                           ): Either[Err, Map[TopicAndPartition, Short]] = {
     setConsumerOffsetMetadata(groupId, offsets.map { kv =>
       kv._1 -> OffsetMetadataAndError(kv._2)
     })
   }

   def setConsumerOffsetMetadata(groupId: String,
                                 metadata: Map[TopicAndPartition, OffsetMetadataAndError]
                                  ): Either[Err, Map[TopicAndPartition, Short]] = {
     var result = Map[TopicAndPartition, Short]()
     val req = OffsetCommitRequest(groupId, metadata)
     val errs = new Err
     val topicAndPartitions = metadata.keySet
     withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer =>
       val resp = consumer.commitOffsets(req)
       val respMap = resp.requestInfo
       val needed = topicAndPartitions.diff(result.keySet)
       needed.foreach { tp: TopicAndPartition =>
         respMap.get(tp).foreach { err: Short =>
           if (err == ErrorMapping.NoError) {
             result += tp -> err
           } else {
             errs.append(ErrorMapping.exceptionFor(err))
           }
         }
       }
       if (result.keys.size == topicAndPartitions.size) {
         return Right(result)
       }
     }
     val missing = topicAndPartitions.diff(result.keySet)
     errs.append(new SparkException(s"Couldn't set offsets for ${missing}"))
     Left(errs)
   }

   private def withBrokers(brokers: Iterable[(String, Int)], errs: Err)
                          (fn: SimpleConsumer => Any): Unit = {
     brokers.foreach { hp =>
       var consumer: SimpleConsumer = null
       try {
         consumer = connect(hp._1, hp._2)
         fn(consumer)
       } catch {
         case NonFatal(e) =>
           errs.append(e)
       } finally {
         if (consumer != null) {
           consumer.close()
         }
       }
     }
   }

   def connect(host: String, port: Int): SimpleConsumer =
     new SimpleConsumer(host, port, config.socketTimeoutMs,
       config.socketReceiveBufferBytes, config.clientId)
 }


小拓展:
Map的連續獲取值用法:
object MapDemo extends App {
  val map = Map("1" -> "11", "2" -> "22", "3" -> "33")
  map.map {
    case (a, b) =>
      println(a + " " + b)
  }

//語法:先獲取key=4的value,如果存在返回否則獲取key=5的value,如果存在返回,不存在的話直接異常。
  val result = map.get("4").orElse(map.get("5")).getOrElse(throw new Exception("exception"))
  println(result)

}


核心程式碼講解之SimpleConsumerConfig的apply方法:
    /**
     * Make a consumer config without requiring group.id or zookeeper.connect,
     * since communicating with brokers also needs common settings such as timeout
     */
    def apply(kafkaParams: Map[String, String]): SimpleConsumerConfig = {
// These keys are from other pre-existing kafka configs for specifying brokers,accept either     // map連續獲取值用法見上面示例
      val brokers = kafkaParams.get("metadata.broker.list")
        .orElse(kafkaParams.get("bootstrap.servers"))
        .getOrElse(throw new SparkException(
          "Must specify metadata.broker.list or bootstrap.servers"))

      val props = new Properties()
      kafkaParams.foreach { case (key, value) =>
        // prevent warnings on parameters ConsumerConfig doesn't know about
        if (key != "metadata.broker.list" && key != "bootstrap.servers") {
          props.put(key, value)
        }
      }
     //如果沒有zookeeper.connect和group.id,設定其value為空字串。      Seq("zookeeper.connect", "group.id").foreach { s =>
        if (!props.contains(s)) {
          props.setProperty(s, "")
        }
      }

      new SimpleConsumerConfig(brokers, props)
    }
OffsetMetadataAndError樣例類:
case class OffsetMetadataAndError(offsetMetadata: OffsetMetadata, error: Short = Errors.NONE.code) {
  def offset = offsetMetadata.offset

  def metadata = offsetMetadata.metadata

  override def toString = "[%s,ErrorCode %d]".format(offsetMetadata, error)
}



TopicAndPartition是對 topic和partition的id的封裝的一個樣例類
 /**
    *
    * @param groupId: String
    * @param offsets: Map[TopicAndPartition, Long]
    * Map中key和value含義TopicAndPartition 是topic和partition id封裝long是消費的結束偏移
* @return */ def setConsumerOffsets(groupId: String,offsets: Map[TopicAndPartition, Long]): Either[Err, Map[TopicAndPartition, Short]] = { setConsumerOffsetMetadata(groupId, offsets.map { kv => kv._1 -> OffsetMetadataAndError(kv._2) }) }

具體更多細節見程式碼註釋吧,寫的很詳細。就不在重複貼在部落格了。
github地址:https://github.com/Dax1n/spark-kafka-directstream-zookeeper