1. 程式人生 > >Leetcode 309.最佳買賣股票時機含冷凍期

Leetcode 309.最佳買賣股票時機含冷凍期

最佳買賣股票時機含冷凍期

給定一個整數陣列,其中第 i 個元素代表了第 i 天的股票價格

設計一個演算法計算出最大利潤。在滿足以下約束條件下,你可以儘可能地完成更多的交易(多次買賣一支股票):

  • 你不能同時參與多筆交易(你必須在再次購買前出售掉之前的股票)。
  • 賣出股票後,你無法在第二天買入股票 (即冷凍期為 1 )

示例:

輸入: [1,2,3,0,2]

輸出: 3

解釋: 對應的交易狀態為: [買入, 賣出, 冷凍期, 買入, 賣出]

 

提示:

這道題可以用動態規劃的思路解決。但是一開始想的時候總是抽象不出狀態轉移方程來,之後看到了一種用狀態機的思路,覺得很清晰,特此拿來分享,先看如下狀態轉移圖:

這裡我們把狀態分成了三個,根據每個狀態的指向,我們可以得出下面的狀態轉移方程:

  • s0[i] = max(s0[i-1], s2[i-1])
  • s1[i] = max(s1[i-1], s0[i-1] - price[i])
  • s2[i] = s1[i-1] + price[i]
 1 class Solution {
 2     public int maxProfit(int[] prices) {
 3         int n=prices.length;
 4         if(prices.length<=1) return 0;
 5         int
[] s0=new int[n]; 6 int[] s1=new int[n]; 7 int[] s2=new int[n]; 8 s1[0]=-prices[0]; 9 s0[0]=0; 10 s2[0]=Integer.MIN_VALUE; 11 for(int i=1;i<n;i++){ 12 s0[i]=Math.max(s0[i-1],s2[i-1]); 13 s1[i]=Math.max(s1[i-1],s0[i-1]-prices[i]); 14
s2[i]=s1[i-1]+prices[i]; 15 } 16 return Math.max(s0[n-1],s2[n-1]); 17 } 18 }