推薦演算法slope one之java實現
阿新 • • 發佈:2019-01-07
import java.util.*; /** * Daniel Lemire A simple implementation of the weighted slope one algorithm in * Java for item-based collaborative filtering. Assumes Java 1.5. * * See main function for example. * * June 1st 2006. Revised by Marco Ponzi on March 29th 2007 */ public class SlopeOne { public static void main(String args[]) { // this is my data base Map<UserId, Map<ItemId, Float>> data = new HashMap<UserId, Map<ItemId, Float>>(); // items ItemId item1 = new ItemId(" candy"); ItemId item2 = new ItemId(" dog"); ItemId item3 = new ItemId(" cat"); ItemId item4 = new ItemId(" war"); ItemId item5 = new ItemId("strange food"); mAllItems = new ItemId[] { item1, item2, item3, item4, item5 }; // I'm going to fill it in HashMap<ItemId, Float> user1 = new HashMap<ItemId, Float>(); HashMap<ItemId, Float> user2 = new HashMap<ItemId, Float>(); HashMap<ItemId, Float> user3 = new HashMap<ItemId, Float>(); HashMap<ItemId, Float> user4 = new HashMap<ItemId, Float>(); user1.put(item1, 1.0f); user1.put(item2, 0.5f); user1.put(item4, 0.1f); data.put(new UserId("Bob"), user1); user2.put(item1, 1.0f); user2.put(item3, 0.5f); user2.put(item4, 0.2f); data.put(new UserId("Jane"), user2); user3.put(item1, 0.9f); user3.put(item2, 0.4f); user3.put(item3, 0.5f); user3.put(item4, 0.1f); data.put(new UserId("Jo"), user3); user4.put(item1, 0.1f); // user4.put(item2,0.4f); // user4.put(item3,0.5f); user4.put(item4, 1.0f); user4.put(item5, 0.4f); data.put(new UserId("StrangeJo"), user4); // next, I create my predictor engine SlopeOne so = new SlopeOne(data); System.out.println("Here's the data I have accumulated..."); so.printData(); // then, I'm going to test it out... HashMap<ItemId, Float> user = new HashMap<ItemId, Float>(); System.out.println("Ok, now we predict..."); user.put(item5, 0.4f); System.out.println("Inputting..."); SlopeOne.print(user); System.out.println("Getting..."); SlopeOne.print(so.predict(user)); // user.put(item4, 0.2f); System.out.println("Inputting..."); SlopeOne.print(user); System.out.println("Getting..."); SlopeOne.print(so.predict(user)); } Map<UserId, Map<ItemId, Float>> mData; Map<ItemId, Map<ItemId, Float>> mDiffMatrix; Map<ItemId, Map<ItemId, Integer>> mFreqMatrix; static ItemId[] mAllItems; public SlopeOne(Map<UserId, Map<ItemId, Float>> data) { mData = data; buildDiffMatrix(); } /** * Based on existing data, and using weights, try to predict all missing * ratings. The trick to make this more scalable is to consider only * mDiffMatrix entries having a large (>1) mFreqMatrix entry. * * It will output the prediction 0 when no prediction is possible. */ public Map<ItemId, Float> predict(Map<ItemId, Float> user) { HashMap<ItemId, Float> predictions = new HashMap<ItemId, Float>(); HashMap<ItemId, Integer> frequencies = new HashMap<ItemId, Integer>(); for (ItemId j : mDiffMatrix.keySet()) { frequencies.put(j, 0); predictions.put(j, 0.0f); } for (ItemId j : user.keySet()) { for (ItemId k : mDiffMatrix.keySet()) { try { float newval = (mDiffMatrix.get(k).get(j).floatValue() + user .get(j).floatValue()) * mFreqMatrix.get(k).get(j).intValue(); predictions.put(k, predictions.get(k) + newval); frequencies.put(k, frequencies.get(k) + mFreqMatrix.get(k).get(j).intValue()); } catch (NullPointerException e) { } } } HashMap<ItemId, Float> cleanpredictions = new HashMap<ItemId, Float>(); for (ItemId j : predictions.keySet()) { if (frequencies.get(j) > 0) { cleanpredictions.put(j, predictions.get(j).floatValue() / frequencies.get(j).intValue()); } } for (ItemId j : user.keySet()) { cleanpredictions.put(j, user.get(j)); } return cleanpredictions; } /** * Based on existing data, and not using weights, try to predict all missing * ratings. The trick to make this more scalable is to consider only * mDiffMatrix entries having a large (>1) mFreqMatrix entry. */ public Map<ItemId, Float> weightlesspredict(Map<ItemId, Float> user) { HashMap<ItemId, Float> predictions = new HashMap<ItemId, Float>(); HashMap<ItemId, Integer> frequencies = new HashMap<ItemId, Integer>(); for (ItemId j : mDiffMatrix.keySet()) { predictions.put(j, 0.0f); frequencies.put(j, 0); } for (ItemId j : user.keySet()) { for (ItemId k : mDiffMatrix.keySet()) { // System.out.println("Average diff between "+j+" and "+ k + // " is "+mDiffMatrix.get(k).get(j).floatValue()+" with n = "+mFreqMatrix.get(k).get(j).floatValue()); float newval = (mDiffMatrix.get(k).get(j).floatValue() + user .get(j).floatValue()); predictions.put(k, predictions.get(k) + newval); } } for (ItemId j : predictions.keySet()) { predictions.put(j, predictions.get(j).floatValue() / user.size()); } for (ItemId j : user.keySet()) { predictions.put(j, user.get(j)); } return predictions; } public void printData() { for (UserId user : mData.keySet()) { System.out.println(user); print(mData.get(user)); } for (int i = 0; i < mAllItems.length; i++) { System.out.print("\n" + mAllItems[i] + ":"); printMatrixes(mDiffMatrix.get(mAllItems[i]), mFreqMatrix.get(mAllItems[i])); } } private void printMatrixes(Map<ItemId, Float> ratings, Map<ItemId, Integer> frequencies) { for (int j = 0; j < mAllItems.length; j++) { System.out.format("%10.3f", ratings.get(mAllItems[j])); System.out.print(" "); System.out.format("%10d", frequencies.get(mAllItems[j])); } System.out.println(); } public static void print(Map<ItemId, Float> user) { for (ItemId j : user.keySet()) { System.out.println(" " + j + " --> " + user.get(j).floatValue()); } } public void buildDiffMatrix() { mDiffMatrix = new HashMap<ItemId, Map<ItemId, Float>>(); mFreqMatrix = new HashMap<ItemId, Map<ItemId, Integer>>(); // first iterate through users for (Map<ItemId, Float> user : mData.values()) { // then iterate through user data for (Map.Entry<ItemId, Float> entry : user.entrySet()) { if (!mDiffMatrix.containsKey(entry.getKey())) { mDiffMatrix.put(entry.getKey(), new HashMap<ItemId, Float>()); mFreqMatrix.put(entry.getKey(), new HashMap<ItemId, Integer>()); } for (Map.Entry<ItemId, Float> entry2 : user.entrySet()) { int oldcount = 0; if (mFreqMatrix.get(entry.getKey()).containsKey( entry2.getKey())) oldcount = mFreqMatrix.get(entry.getKey()) .get(entry2.getKey()).intValue(); float olddiff = 0.0f; if (mDiffMatrix.get(entry.getKey()).containsKey( entry2.getKey())) olddiff = mDiffMatrix.get(entry.getKey()) .get(entry2.getKey()).floatValue(); float observeddiff = entry.getValue() - entry2.getValue(); mFreqMatrix.get(entry.getKey()).put(entry2.getKey(), oldcount + 1); mDiffMatrix.get(entry.getKey()).put(entry2.getKey(), olddiff + observeddiff); } } } for (ItemId j : mDiffMatrix.keySet()) { for (ItemId i : mDiffMatrix.get(j).keySet()) { float oldvalue = mDiffMatrix.get(j).get(i).floatValue(); int count = mFreqMatrix.get(j).get(i).intValue(); mDiffMatrix.get(j).put(i, oldvalue / count); } } } } class UserId { String content; public UserId(String s) { content = s; } public int hashCode() { return content.hashCode(); } public String toString() { return content; } } class ItemId { String content; public ItemId(String s) { content = s; } public int hashCode() { return content.hashCode(); } public String toString() { return content; } }