利用tensorflow object detection訓練ssd_mobilenets
已經安裝好了object detection這個api,先利用該api對ssd_mobilenets進行訓練
1.資料夾構造
為不影響tensorflow的原始碼,我在我的主資料夾下新建了名為ssd_mobilenets的資料夾,裡面放置了名為QRCodeData的資料夾,QRCodeData中有image和xml兩個資料夾,其中image包含這圖片資料,xml包含著xml資料。在根目錄新建models資料夾,用於存放config和預訓練模型。繼續再根目錄新建data資料夾,用於存放.record資料。
2.資料準備
tensorflow有自己的格式要求,pascal的voc格式不能直接使用,但是之前說過了voc格式的資料即使各個框架不適用,但是也會給轉化的指令碼。為了進行轉化,除了影象資料和xml檔案,還需要準備一下幾個檔案
(1)準備.pbtxt檔案
.pbtxt用於表示label和id的對映關係,我的.pbtxt檔案命名pascal_label_map.pbtxt
,其中內容如下:
item {
id: 1
name: 'QR_code'
}
如有多類則在後面不斷增加id
item {
id: 2
name: XXX
}
(2)準備.txt檔案
.txt檔案用於表示影象檔名中目標與id之間的對映關係。用指令碼提取出所有資料集的名稱,每個影象檔名佔一行:
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 12 17:50:26 2017
@author: seven
"""
import os
from os import listdir, getcwd
from os.path import join
if __name__ == '__main__':
source_folder='/home/seven/darknet/infrared/plate/image/'#地址是所有圖片的儲存地點
dest='/home/seven/darknet/infrared/train.txt' #儲存train.txt的地址
file_list=os.listdir(source_folder) #賦值圖片所在資料夾的檔案列表
train_file=open(dest,'a' ) #開啟檔案
for file_obj in file_list: #訪問檔案列表中的每一個檔案
file_path=os.path.join(source_folder,file_obj)
file_name,file_extend=os.path.splitext(file_obj)
#file_name 儲存檔案的名字,file_extend儲存副檔名
file_num=int(file_name)
train_file.write(file_name+'\n')
train_file.close()#關閉檔案
將source_folder改為自己影象所在路徑,dest為輸出txt的路徑。得到的.txt每一行儲存著image中每一個影象的名稱,由於我只檢測一類,所以直接在每一行加個1。我的.txt檔案內容如下:
QR_code_2017711_122 1
QR_code_2017711_422 1
QR_code_2017711_506 1
QR_code_2017711_538 1
QR_code_2017711_474 1
QR_code_2017711_310 1
QR_code_2017711_499 1
QR_code_2017711_081 1
QR_code_2017711_269 1
QR_code_2017711_472 1
QR_code_2017711_211 1
QR_code_2017711_060 1
QR_code_2017711_071 1
QR_code_2017711_204 1
QR_code_2017711_276 1
QR_code_2017711_206 1
QR_code_2017711_214 1
QR_code_2017711_124 1
QR_code_2017711_331 1
QR_code_2017711_180 1
(3)生成.record檔案
官方提供了指令碼,我將指令碼進行了修改,不需要再加其他引數,直接在程式碼中修改路徑後,在ssd_mobilenets根目錄儲存為a.py,終端進入ssd_mobilenets ,輸入python a.py
即可。
指令碼中,data_dir為資料路徑,其下有著image和xml兩個資料夾, output_path為輸出.record檔案的路徑, label_map_path為生成的.pbtxt路徑,examples_path為生成的txt檔案路徑。annotations_dir為xml檔案路徑。
(生成QR_code_val.record用於模型評估,生成QR_code_train.record用於訓練,每次該指令碼只能生成一個record,所以需要val.record可直接用此指令碼,需要train.record需要將指令碼中的val改為train)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Convert raw PASCAL dataset to TFRecord for object_detection.
Example usage:
./create_pascal_tf_record --data_dir=/home/user/VOCdevkit \
--year=VOC2012 \
--output_path=/home/user/pascal.record
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import hashlib
import io
import logging
import os
from lxml import etree
import PIL.Image
import tensorflow as tf
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
def dict_to_tf_example(data,
dataset_directory,
label_map_dict,
ignore_difficult_instances=False,
image_subdirectory='image'):
"""Convert XML derived dict to tf.Example proto.
Notice that this function normalizes the bounding box coordinates provided
by the raw data.
Args:
data: dict holding PASCAL XML fields for a single image (obtained by
running dataset_util.recursive_parse_xml_to_dict)
dataset_directory: Path to root directory holding PASCAL dataset
label_map_dict: A map from string label names to integers ids.
ignore_difficult_instances: Whether to skip difficult instances in the
dataset (default: False).
image_subdirectory: String specifying subdirectory within the
PASCAL dataset directory holding the actual image data.
Returns:
example: The converted tf.Example.
Raises:
ValueError: if the image pointed to by data['filename'] is not a valid JPEG
"""
img_path = os.path.join(image_subdirectory, data['filename']+'.jpg')
full_path = os.path.join(dataset_directory, img_path)
with tf.gfile.GFile(full_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
if image.format != 'JPEG':
raise ValueError('Image format not JPEG')
key = hashlib.sha256(encoded_jpg).hexdigest()
width = int(data['size']['width'])
height = int(data['size']['height'])
xmin = []
ymin = []
xmax = []
ymax = []
classes = []
classes_text = []
truncated = []
poses = []
difficult_obj = []
for obj in data['object']:
difficult = bool(int(obj['difficult']))
xmin.append(float(obj['bndbox']['xmin']) / width)
ymin.append(float(obj['bndbox']['ymin']) / height)
xmax.append(float(obj['bndbox']['xmax']) / width)
ymax.append(float(obj['bndbox']['ymax']) / height)
classes_text.append(obj['name'].encode('utf8'))
classes.append(label_map_dict[obj['name']])
truncated.append(int(obj['truncated']))
poses.append(obj['pose'].encode('utf8'))
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(
data['filename'].encode('utf8')),
'image/source_id': dataset_util.bytes_feature(
data['filename'].encode('utf8')),
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
'image/object/truncated': dataset_util.int64_list_feature(truncated),
'image/object/view': dataset_util.bytes_list_feature(poses),
}))
return example
def main(_):
data_dir = '/home/seven/ssd_mobilenets/QRCodeData'
output_path = '/home/seven/ssd_mobilenets/data/QR_code_val.record'
writer = tf.python_io.TFRecordWriter(output_path)
label_map_path = '/home/seven/ssd_mobilenets/data/pascal_label_map.pbtxt'
label_map_dict = label_map_util.get_label_map_dict(label_map_path)
examples_path = '/home/seven/ssd_mobilenets/data/val.txt'
annotations_dir = '/home/seven/ssd_mobilenets/QRCodeData/xml'
examples_list = dataset_util.read_examples_list(examples_path)
for idx, example in enumerate(examples_list):
if idx % 100 == 0:
logging.info('On image %d of %d', idx, len(examples_list))
path = os.path.join(annotations_dir, example + '.xml')
with tf.gfile.GFile(path, 'r') as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
tf_example = dict_to_tf_example(data, data_dir, label_map_dict)
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
tf.app.run()
這樣就生成了需要的.record檔案!
3.下載預訓練模型
點選下載模型:預訓練模型
下載後解壓到ssd_mobilenets/models
4.修改配置檔案
將檔案models/object_detection/samples/configs/ssd_mobilenet_v1_pets.config複製到ssd_mobilenets/models並開啟做如下修改:
(1) num_classes:修改為自己的classes num
(2)將所有PATH_TO_BE_CONFIGURED的地方修改為自己之前設定的路徑(總共五處)
我的修改後如下:
# SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
(中間省略)
fine_tune_checkpoint: "/home/seven/ssd_mobilenets/result/1-50000/model.ckpt-50000"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 600000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/seven/ssd_mobilenets/data/QR_code_train.record"
}
label_map_path: "/home/seven/ssd_mobilenets/data/pascal_label_map.pbtxt"
}
eval_config: {
num_examples: 100
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/seven/ssd_mobilenets/data/QR_code_val.record"
}
label_map_path: "/home/seven/ssd_mobilenets/data/pascal_label_map.pbtxt"
shuffle: false
num_readers: 1
}
5.進行訓練
終端進入models/object_detection路徑,輸入
python train.py --train_dir='/home/seven/ssd_mobilenets/result' --pipeline_config_path='/home/seven/ssd_mobilenets/models/ssd_mobilenet_v1_pets.config
其中train_dir為訓練模型的輸出路徑,pipeline_config_path為config配置檔案路徑。生成的模型將再train_dir中。
6.tensorboard視覺化
終端輸入
tensorboard --logdir='/home/seven/ssd_mobilenets/result
即可根據提示在瀏覽器中開啟網址觀看訓練資料(我的Firefox開啟失敗,用谷歌瀏覽器正常開啟),其中logdir為生成模型的輸出路徑。