Ubuntu上用caffe的SSD方法訓練umdfaces資料集
阿新 • • 發佈:2019-01-08
實驗目的
繼前一段時間用SSD訓練過VOC資料集以後,這一次使用SSD+K80伺服器來訓練自己的人臉識別應用,選擇的資料集還是之前下載的umdfaces,總共36w張人臉影象。
實驗環境
訓練平臺:NVIDIA K80
預測平臺:NVIDIA TX1
框架 :caffe
方法 :SSD
資料集 :umdfaces實驗準備
其實訓練的步驟在上一篇部落格中寫得已經很清楚了,這一次主要關注的是資料集的處理,最方便的方法就是將自己的資料集也做成VOC資料集格式,也即是三個資料夾路徑的結構:關於資料集的處理,在這邊博文中寫得很清楚:
資料集處理好之後,和上一篇部落格不同的主要是訓練指令碼(Python)的寫法,這裡貼出我的檔案,在後面有註釋為#luyi的地方都是需要自己去配置的地方:
#!/usr/bin/python from __future__ import print_function import caffe from caffe.model_libs import * from google.protobuf import text_format import math import os import shutil import stat import subprocess import sys # Add extra layers on top of a "base" network (e.g. VGGNet or Inception). def AddExtraLayers(net, use_batchnorm=True, lr_mult=1): use_relu = True # Add additional convolutional layers. # 19 x 19 from_layer = net.keys()[-1] # TODO(weiliu89): Construct the name using the last layer to avoid duplication. # 10 x 10 out_layer = "conv6_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv6_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2, lr_mult=lr_mult) # 5 x 5 from_layer = out_layer out_layer = "conv7_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv7_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2, lr_mult=lr_mult) # 3 x 3 from_layer = out_layer out_layer = "conv8_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv8_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 0, 1, lr_mult=lr_mult) # 1 x 1 from_layer = out_layer out_layer = "conv9_1" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1, lr_mult=lr_mult) from_layer = out_layer out_layer = "conv9_2" ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 0, 1, lr_mult=lr_mult) return net ### Modify the following parameters accordingly ### # The directory which contains the caffe code. # We assume you are running the script at the CAFFE_ROOT. caffe_root = os.getcwd() # Set true if you want to start training right after generating all files. run_soon = True # Set true if you want to load from most recently saved snapshot. # Otherwise, we will load from the pretrain_model defined below. resume_training = True # If true, Remove old model files. remove_old_models = False # The database file for training data. Created by data/VOC0712/create_data.sh train_data = "/media/scs4450/hard/VOCdevkit/FACE_LUYI/lmdb/FACE_LUYI_trainval_lmdb" #luyi # The database file for testing data. Created by data/VOC0712/create_data.sh test_data = "/media/scs4450/hard/VOCdevkit/FACE_LUYI/lmdb/FACE_LUYI_test_lmdb" #luyi # Specify the batch sampler. resize_width = 300 resize_height = 300 resize = "{}x{}".format(resize_width, resize_height) batch_sampler = [ { 'sampler': { }, 'max_trials': 1, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.1, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.3, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.5, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.7, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'min_jaccard_overlap': 0.9, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': { 'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': { 'max_jaccard_overlap': 1.0, }, 'max_trials': 50, 'max_sample': 1, }, ] train_transform_param = { 'mirror': True, 'mean_value': [104, 117, 123], 'resize_param': { 'prob': 1, 'resize_mode': P.Resize.WARP, 'height': resize_height, 'width': resize_width, 'interp_mode': [ P.Resize.LINEAR, P.Resize.AREA, P.Resize.NEAREST, P.Resize.CUBIC, P.Resize.LANCZOS4, ], }, 'distort_param': { 'brightness_prob': 0.5, 'brightness_delta': 32, 'contrast_prob': 0.5, 'contrast_lower': 0.5, 'contrast_upper': 1.5, 'hue_prob': 0.5, 'hue_delta': 18, 'saturation_prob': 0.5, 'saturation_lower': 0.5, 'saturation_upper': 1.5, 'random_order_prob': 0.0, }, 'expand_param': { 'prob': 0.5, 'max_expand_ratio': 4.0, }, 'emit_constraint': { 'emit_type': caffe_pb2.EmitConstraint.CENTER, } } test_transform_param = { 'mean_value': [104, 117, 123], 'resize_param': { 'prob': 1, 'resize_mode': P.Resize.WARP, 'height': resize_height, 'width': resize_width, 'interp_mode': [P.Resize.LINEAR], }, } # If true, use batch norm for all newly added layers. # Currently only the non batch norm version has been tested. use_batchnorm = False lr_mult = 1 # Use different initial learning rate. if use_batchnorm: base_lr = 0.0004 else: # A learning rate for batch_size = 1, num_gpus = 1. base_lr = 0.00004 # Modify the job name if you want. job_name = "SSD_{}".format(resize) # The name of the model. Modify it if you want. model_name = "VGG_FACE_LUYI_{}".format(job_name) # Directory which stores the model .prototxt file. save_dir = "/home/ly/ssd/caffe/models/VGGNet/FACE_LUYI/{}".format(job_name) #luyi # Directory which stores the snapshot of models. snapshot_dir = "/home/ly/ssd/caffe/models/VGGNet/FACE_LUYI/{}".format(job_name) #luyi # Directory which stores the job script and log file. job_dir = "/home/ly/ssd/caffe/jobs/VGGNet/FACE_LUYI/{}".format(job_name) #luyi # Directory which stores the detection results. output_result_dir = "{}/data/VOCdevkit/results/FACE_LUYI/{}/Main".format(os.environ['CAFFE_ROOT'], job_name) #luyi # model definition files. train_net_file = "{}/train.prototxt".format(save_dir) test_net_file = "{}/test.prototxt".format(save_dir) deploy_net_file = "{}/deploy.prototxt".format(save_dir) solver_file = "{}/solver.prototxt".format(save_dir) # snapshot prefix. snapshot_prefix = "{}/{}".format(snapshot_dir, model_name) # job script path. job_file = "{}/{}.sh".format(job_dir, model_name) # Stores the test image names and sizes. Created by data/VOC0712/create_list.sh name_size_file = "/home/ly/ssd/caffe/data/FACE_LUYI/test_name_size.txt" #luyi # The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet. pretrain_model = "/home/ly/ssd/caffe/models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel" #luyi # Stores LabelMapItem. label_map_file = "/home/ly/ssd/caffe/data/FACE_LUYI/labelmap_voc.prototxt" # MultiBoxLoss parameters. num_classes = 2 #luyi share_location = True background_label_id=0 train_on_diff_gt = True normalization_mode = P.Loss.VALID code_type = P.PriorBox.CENTER_SIZE ignore_cross_boundary_bbox = False mining_type = P.MultiBoxLoss.MAX_NEGATIVE neg_pos_ratio = 3. loc_weight = (neg_pos_ratio + 1.) / 4. multibox_loss_param = { 'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1, 'conf_loss_type': P.MultiBoxLoss.SOFTMAX, 'loc_weight': loc_weight, 'num_classes': num_classes, 'share_location': share_location, 'match_type': P.MultiBoxLoss.PER_PREDICTION, 'overlap_threshold': 0.5, 'use_prior_for_matching': True, 'background_label_id': background_label_id, 'use_difficult_gt': train_on_diff_gt, 'mining_type': mining_type, 'neg_pos_ratio': neg_pos_ratio, 'neg_overlap': 0.5, 'code_type': code_type, 'ignore_cross_boundary_bbox': ignore_cross_boundary_bbox, } loss_param = { 'normalization': normalization_mode, } # parameters for generating priors. # minimum dimension of input image min_dim = 300 # conv4_3 ==> 38 x 38 # fc7 ==> 19 x 19 # conv6_2 ==> 10 x 10 # conv7_2 ==> 5 x 5 # conv8_2 ==> 3 x 3 # conv9_2 ==> 1 x 1 mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2'] # in percent % min_ratio = 20 max_ratio = 90 step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2))) min_sizes = [] max_sizes = [] for ratio in xrange(min_ratio, max_ratio + 1, step): min_sizes.append(min_dim * ratio / 100.) max_sizes.append(min_dim * (ratio + step) / 100.) min_sizes = [min_dim * 10 / 100.] + min_sizes max_sizes = [min_dim * 20 / 100.] + max_sizes steps = [8, 16, 32, 64, 100, 300] aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]] # L2 normalize conv4_3. normalizations = [20, -1, -1, -1, -1, -1] # variance used to encode/decode prior bboxes. if code_type == P.PriorBox.CENTER_SIZE: prior_variance = [0.1, 0.1, 0.2, 0.2] else: prior_variance = [0.1] flip = True clip = False # Solver parameters. # Defining which GPUs to use. gpus = "1" #luyi gpulist = gpus.split(",") num_gpus = len(gpulist) # Divide the mini-batch to different GPUs. batch_size = 32 accum_batch_size = 32 iter_size = accum_batch_size / batch_size solver_mode = P.Solver.CPU device_id = 0 batch_size_per_device = batch_size if num_gpus > 0: batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus)) iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus))) solver_mode = P.Solver.GPU device_id = int(gpulist[0]) if normalization_mode == P.Loss.NONE: base_lr /= batch_size_per_device elif normalization_mode == P.Loss.VALID: base_lr *= 25. / loc_weight elif normalization_mode == P.Loss.FULL: # Roughly there are 2000 prior bboxes per image. # TODO(weiliu89): Estimate the exact # of priors. base_lr *= 2000. # Evaluate on whole test set. num_test_image = 4952 #luyi test_batch_size = 8 # Ideally test_batch_size should be divisible by num_test_image, # otherwise mAP will be slightly off the true value. test_iter = int(math.ceil(float(num_test_image) / test_batch_size)) solver_param = { # Train parameters 'base_lr': base_lr, 'weight_decay': 0.0005, 'lr_policy': "multistep", 'stepvalue': [80000, 100000, 120000], 'gamma': 0.1, 'momentum': 0.9, 'iter_size': iter_size, 'max_iter': 120000, 'snapshot': 80000, 'display': 10, 'average_loss': 10, 'type': "SGD", 'solver_mode': solver_mode, 'device_id': device_id, 'debug_info': False, 'snapshot_after_train': True, # Test parameters 'test_iter': [test_iter], 'test_interval': 10000, 'eval_type': "detection", 'ap_version': "11point", 'test_initialization': False, } # parameters for generating detection output. det_out_param = { 'num_classes': num_classes, 'share_location': share_location, 'background_label_id': background_label_id, 'nms_param': {'nms_threshold': 0.45, 'top_k': 400}, 'save_output_param': { 'output_directory': output_result_dir, 'output_name_prefix': "comp4_det_test_", 'output_format': "VOC", 'label_map_file': label_map_file, 'name_size_file': name_size_file, 'num_test_image': num_test_image, }, 'keep_top_k': 200, 'confidence_threshold': 0.01, 'code_type': code_type, } # parameters for evaluating detection results. det_eval_param = { 'num_classes': num_classes, 'background_label_id': background_label_id, 'overlap_threshold': 0.5, 'evaluate_difficult_gt': False, 'name_size_file': name_size_file, } ### Hopefully you don't need to change the following ### # Check file. check_if_exist(train_data) check_if_exist(test_data) check_if_exist(label_map_file) check_if_exist(pretrain_model) make_if_not_exist(save_dir) make_if_not_exist(job_dir) make_if_not_exist(snapshot_dir) # Create train net. net = caffe.NetSpec() net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device, train=True, output_label=True, label_map_file=label_map_file, transform_param=train_transform_param, batch_sampler=batch_sampler) VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True, dropout=False) AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult) mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers, use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes, aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations, num_classes=num_classes, share_location=share_location, flip=flip, clip=clip, prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult) # Create the MultiBoxLossLayer. name = "mbox_loss" mbox_layers.append(net.label) net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param, loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), propagate_down=[True, True, False, False]) with open(train_net_file, 'w') as f: print('name: "{}_train"'.format(model_name), file=f) print(net.to_proto(), file=f) shutil.copy(train_net_file, job_dir) # Create test net. net = caffe.NetSpec() net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size, train=False, output_label=True, label_map_file=label_map_file, transform_param=test_transform_param) VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True, dropout=False) AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult) mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers, use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes, aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations, num_classes=num_classes, share_location=share_location, flip=flip, clip=clip, prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult) conf_name = "mbox_conf" if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX: reshape_name = "{}_reshape".format(conf_name) net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes])) softmax_name = "{}_softmax".format(conf_name) net[softmax_name] = L.Softmax(net[reshape_name], axis=2) flatten_name = "{}_flatten".format(conf_name) net[flatten_name] = L.Flatten(net[softmax_name], axis=1) mbox_layers[1] = net[flatten_name] elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC: sigmoid_name = "{}_sigmoid".format(conf_name) net[sigmoid_name] = L.Sigmoid(net[conf_name]) mbox_layers[1] = net[sigmoid_name] net.detection_out = L.DetectionOutput(*mbox_layers, detection_output_param=det_out_param, include=dict(phase=caffe_pb2.Phase.Value('TEST'))) net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label, detection_evaluate_param=det_eval_param, include=dict(phase=caffe_pb2.Phase.Value('TEST'))) with open(test_net_file, 'w') as f: print('name: "{}_test"'.format(model_name), file=f) print(net.to_proto(), file=f) shutil.copy(test_net_file, job_dir) # Create deploy net. # Remove the first and last layer from test net. deploy_net = net with open(deploy_net_file, 'w') as f: net_param = deploy_net.to_proto() # Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net. del net_param.layer[0] del net_param.layer[-1] net_param.name = '{}_deploy'.format(model_name) net_param.input.extend(['data']) net_param.input_shape.extend([ caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])]) print(net_param, file=f) shutil.copy(deploy_net_file, job_dir) # Create solver. solver = caffe_pb2.SolverParameter( train_net=train_net_file, test_net=[test_net_file], snapshot_prefix=snapshot_prefix, **solver_param) with open(solver_file, 'w') as f: print(solver, file=f) shutil.copy(solver_file, job_dir) max_iter = 0 # Find most recent snapshot. for file in os.listdir(snapshot_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if iter > max_iter: max_iter = iter train_src_param = '--weights="{}" \\\n'.format(pretrain_model) if resume_training: if max_iter > 0: train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter) if remove_old_models: # Remove any snapshots smaller than max_iter. for file in os.listdir(snapshot_dir): if file.endswith(".solverstate"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if max_iter > iter: os.remove("{}/{}".format(snapshot_dir, file)) if file.endswith(".caffemodel"): basename = os.path.splitext(file)[0] iter = int(basename.split("{}_iter_".format(model_name))[1]) if max_iter > iter: os.remove("{}/{}".format(snapshot_dir, file)) # Create job file. with open(job_file, 'w') as f: f.write('cd {}\n'.format(caffe_root)) f.write('/home/ly/ssd/caffe/build/tools/caffe train \\\n') #luyi f.write('--solver="{}" \\\n'.format(solver_file)) f.write(train_src_param) if solver_param['solver_mode'] == P.Solver.GPU: f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name)) else: f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name)) # Copy the python script to job_dir. py_file = os.path.abspath(__file__) shutil.copy(py_file, job_dir) # Run the job. os.chmod(job_file, stat.S_IRWXU) if run_soon: subprocess.call(job_file, shell=True)
實驗結果
計劃訓練的迭代次數是12w次,但是在K80上只開了一個核來進行計算,差不多一天可以迭代1w+次吧,跑了6天將近7w次,打斷來測試,在K80上,檢測單張人臉圖片,解析度在300X300左右,速度為40ms左右,也就是說幀率可以達到25fps,速度還是很快的。至於準確度,在log檔案裡面,每1w次迭代之後會計算一個mAP,第6w次的時候計算了一下mAP(作者自定義過,跟mAP比較像)為0.965:
總體來說,效果不錯,不過目標是在嵌入式平臺上做到實時,還需要再繼續努力。
歡迎各位來交流:435977170(Q&Q)