10. Regular Expression Matching-動態規劃/遞歸回溯
阿新 • • 發佈:2019-01-08
mplement regular expression matching with support for '.'
and '*'
.
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
The function prototype should be:
bool isMatch(const char *s, const char *p)
Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "a*") → true
isMatch("aa", ".*") → true
isMatch("ab", ".*") → true
isMatch("aab", "c*a*b") → true
discuss中非常nice的程式碼:
遞迴、動態規劃:
//遞迴 class Solution { public: bool isMatch(string s, string p) { if (p.empty()) return s.empty(); if ('*' == p[1]) // x* matches empty string or at least one character: x* -> xx* // *s is to ensure s is non-empty return (isMatch(s, p.substr(2)) || !s.empty() && (s[0] == p[0] || '.' == p[0]) && isMatch(s.substr(1), p)); else return !s.empty() && (s[0] == p[0] || '.' == p[0]) && isMatch(s.substr(1), p.substr(1)); } }; //動態規劃 class Solution { public: bool isMatch(string s, string p) { /** * f[i][j]: if s[0..i-1] matches p[0..j-1] * if p[j - 1] != '*' * f[i][j] = f[i - 1][j - 1] && s[i - 1] == p[j - 1] * if p[j - 1] == '*', denote p[j - 2] with x * f[i][j] is true iff any of the following is true * 1) "x*" repeats 0 time and matches empty: f[i][j - 2] * 2) "x*" repeats >= 1 times and matches "x*x": s[i - 1] == x && f[i - 1][j] * '.' matches any single character */ int m = s.size(), n = p.size(); vector<vector<bool>> f(m + 1, vector<bool>(n + 1, false)); f[0][0] = true; for (int i = 1; i <= m; i++) f[i][0] = false; //p[0.., j - 3, j - 2, j - 1] matches empty iff p[j - 1] is '*' and p[0..j - 3] matches empty for (int j = 1; j <= n; j++) f[0][j] = j > 1 && '*' == p[j - 1] && f[0][j - 2]; for (int i = 1; i <= m; i++) for (int j = 1; j <= n; j++) if (p[j - 1] != '*') f[i][j] = f[i - 1][j - 1] && (s[i - 1] == p[j - 1] || '.' == p[j - 1]); else //p[0] cannot be '*' so no need to check "j > 1" here f[i][j] = f[i][j - 2] || (s[i - 1] == p[j - 2] || '.' == p[j - 2]) && f[i - 1][j]; return f[m][n]; } };