POJ 1050 To the Max (最大連續區間和+暴力列舉,水題)
阿新 • • 發佈:2019-01-08
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
Output
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define inf 99999999 using namespace std; int a[111][111],b[111]; int fun(int n) //求連續子序列和的最大值 { int i,sum,ans; sum=0;ans=-inf; for(i=1;i<=n;i++) { sum+=b[i]; ans=max(ans,sum); if(sum<0) sum=0; } return ans; } int main() { int n,i,j,k,ans; cin>>n; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) cin>>a[i][j]; } ans=-inf; for(i=1;i<=n;i++) { //暴力每一種矩陣的情況,選擇最大值 for(j=1;j<=n;j++) b[j]=0; for(j=i;j<=n;j++) { for(k=1;k<=n;k++) { b[k]+=a[j][k]; } ans=max(fun(k),ans); } } cout<<ans<<endl; return 0; }