利用opencv實現人臉檢測(C++版)
阿新 • • 發佈:2019-01-08
小編所有的帖子都是基於unbuntu系統的,當然稍作修改同樣試用於windows的,經過小編的絞盡腦汁,把剛剛發的那篇python 實現人臉和眼睛的檢測的程式用C++ 實現了,當然,也參考了不少大神的部落格,下面我們就一起來看看:
Linux系統下安裝opencv我就再囉嗦一次,防止有些人沒有安裝沒調試出來噴小編的程式是個坑,
sudo apt-get install libcv-dev
sudo apt-get install libopencv-dev
看看你的usr/share/opencv/haarcascades目錄下有沒有出現幾個訓練集.XML檔案,接下來我拿人臉和眼睛檢測作為例項玩一下,程式如下:
、
好多人不會編譯opencv,我再多寫幾句解決一下好多菜鳥的困難吧
copy完程式碼之後,儲存為xiaorun.cpp哦,記得編譯試用
個g++ -o xiaorun ./xiaorun.cpp -lopencv_highgui -lopenc_imgproc -lopencv_core -lopencv_objdetect
即可實現
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <iostream>
using namespace cv;
using namespace std;
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip );
int main()
{
CascadeClassifier cascade, nestedCascade;
bool stop = false;
cascade.load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml");
nestedCascade.load("/usr/share/opencv/haarcascades/haarcascade_eye.xml");
// frame = imread("renlian.jpg");
VideoCapture cap(0 ); //開啟預設攝像頭
if(!cap.isOpened())
{
return -1;
}
Mat frame;
Mat edges;
while(!stop)
{
cap>>frame;
detectAndDraw( frame, cascade, nestedCascade,2,0 );
if(waitKey(30) >=0)
stop = true;
imshow("cam",frame);
}
//CascadeClassifier cascade, nestedCascade;
// bool stop = false;
//訓練好的檔名稱,放置在可執行檔案同目錄下
// cascade.load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml");
// nestedCascade.load("/usr/share/opencv/haarcascades/aarcascade_eye.xml");
// frame = imread("renlian.jpg");
// detectAndDraw( frame, cascade, nestedCascade,2,0 );
// waitKey();
//while(!stop)
//{
// cap>>frame;
// detectAndDraw( frame, cascade, nestedCascade,2,0 );
if(waitKey(30) >=0)
stop = true;
//}
return 0;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip )
{
int i = 0;
double t = 0;
//建立用於存放人臉的向量容器
vector<Rect> faces, faces2;
//定義一些顏色,用來標示不同的人臉
const static Scalar colors[] = {
CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)} ;
//建立縮小的圖片,加快檢測速度
//nt cvRound (double value) 對一個double型的數進行四捨五入,並返回一個整型數!
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
//轉成灰度影象,Harr特徵基於灰度圖
cvtColor( img, gray, CV_BGR2GRAY );
// imshow("灰度",gray);
//改變影象大小,使用雙線性差值
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
// imshow("縮小尺寸",smallImg);
//變換後的影象進行直方圖均值化處理
equalizeHist( smallImg, smallImg );
//imshow("直方圖均值處理",smallImg);
//程式開始和結束插入此函式獲取時間,經過計算求得演算法執行時間
t = (double)cvGetTickCount();
//檢測人臉
//detectMultiScale函式中smallImg表示的是要檢測的輸入影象為smallImg,faces表示檢測到的人臉目標序列,1.1表示
//每次影象尺寸減小的比例為1.1,2表示每一個目標至少要被檢測到3次才算是真的目標(因為周圍的畫素和不同的視窗大
//小都可以檢測到人臉),CV_HAAR_SCALE_IMAGE表示不是縮放分類器來檢測,而是縮放影象,Size(30, 30)為目標的
//最小最大尺寸
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_SCALE_IMAGE
,Size(30, 30));
//如果使能,翻轉影象繼續檢測
if( tryflip )
{
flip(smallImg, smallImg, 1);
// imshow("反轉影象",smallImg);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_SCALE_IMAGE
,Size(30, 30) );
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
// qDebug( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
double aspect_ratio = (double)r->width/r->height;
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
//標示人臉時在縮小之前的影象上標示,所以這裡根據縮放比例換算回去
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
else
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
color, 3, 8, 0);
if( nestedCascade.empty() )
continue;
smallImgROI = smallImg(*r);
//同樣方法檢測人眼
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
|CV_HAAR_SCALE_IMAGE
,Size(30, 30) );
for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
{
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
radius = cvRound((nr->width + nr->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
}
// imshow( "識別結果", img );
}
收藏