flags的解析方法
阿新 • • 發佈:2019-01-09
1、使用argparse包
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--learning_rate',
type=float,
default=0.01,
help='Initial learning rate.'
)
parser.add_argument(
'--max_steps',
type=int,
default=2000,
help='Number of steps to run trainer.'
)
FLAGS, unparsed = parser.parse_known_args()
# 輸出時,
print(FLAGS.learning_rate) #輸出=0.01
2、使用tf的包(1)
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('train_dir', 'tmp/train/',
"""Directory where to write event logs """
"""and checkpoint.""" )
tf.app.flags.DEFINE_integer('max_steps', 700,
"""Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
print(FLAGS.max_steps) # 輸出=700
3、使用tf的包(2)——簡潔用法
from tensorflow import flags
flags.DEFINE _float("threshold", 0.1, "detection threshold")
flags.DEFINE_string("model", "", "configuration of choice")
flags.DEFINE_string("trainer", "rmsprop", "training algorithm")
FLAGS = flags.FLAGS
print(FLAGS.threshold) # 輸出=0.1