1. 程式人生 > >三種特徵選擇方法及Spark MLlib呼叫例項(Scala/Java/python)

三種特徵選擇方法及Spark MLlib呼叫例項(Scala/Java/python)

VectorSlicer

演算法介紹:

        VectorSlicer是一個轉換器輸入特徵向量,輸出原始特徵向量子集。VectorSlicer接收帶有特定索引的向量列,通過對這些索引的值進行篩選得到新的向量集。可接受如下兩種索引

1.整數索引,setIndices()

2.字串索引代表向量中特徵的名字,此類要求向量列有AttributeGroup,因為該工具根據Attribute來匹配名字欄位。

指定整數或者字串型別都是可以的。另外,同時使用整數索引和字串名字也是可以的。不允許使用重複的特徵,所以所選的索引或者名字必須是沒有獨一的。注意如果使用名字特徵,當遇到空值的時候將會報錯。

輸出將會首先按照所選的數字索引排序(按輸入順序),其次按名字排序(按輸入順序)。

示例:假設我們有一個DataFrame含有userFeatures列:

userFeatures

------------------

 [0.0, 10.0, 0.5]

userFeatures是一個向量列包含3個使用者特徵。假設userFeatures的第一列全為0,我們希望刪除它並且只選擇後兩項。我們可以通過索引setIndices(1,2)來選擇後兩項併產生一個新的features列:

userFeatures     | features

------------------|-----------------------------

 [0.0, 10.0, 0.5] | [10.0, 0.5]

假設我們還有如同

["f1","f2", "f3"]的屬性,那可以通過名字setNames("f2","f3")的形式來選擇:

userFeatures     | features

------------------|-----------------------------

 [0.0, 10.0, 0.5] | [10.0, 0.5]

 ["f1", "f2","f3"] | ["f2", "f3"]

呼叫示例:

Scala:

import java.util.Arrays

import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NumericAttribute}
import org.apache.spark.ml.feature.VectorSlicer
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType

val data = Arrays.asList(Row(Vectors.dense(-2.0, 2.3, 0.0)))

val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("f1", "f2", "f3").map(defaultAttr.withName)
val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])

val dataset = spark.createDataFrame(data, StructType(Array(attrGroup.toStructField())))

val slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")

slicer.setIndices(Array(1)).setNames(Array("f3"))
// or slicer.setIndices(Array(1, 2)), or slicer.setNames(Array("f2", "f3"))

val output = slicer.transform(dataset)
println(output.select("userFeatures", "features").first())

Java:
import java.util.List;

import com.google.common.collect.Lists;

import org.apache.spark.ml.attribute.Attribute;
import org.apache.spark.ml.attribute.AttributeGroup;
import org.apache.spark.ml.attribute.NumericAttribute;
import org.apache.spark.ml.feature.VectorSlicer;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;

Attribute[] attrs = new Attribute[]{
  NumericAttribute.defaultAttr().withName("f1"),
  NumericAttribute.defaultAttr().withName("f2"),
  NumericAttribute.defaultAttr().withName("f3")
};
AttributeGroup group = new AttributeGroup("userFeatures", attrs);

List<Row> data = Lists.newArrayList(
  RowFactory.create(Vectors.sparse(3, new int[]{0, 1}, new double[]{-2.0, 2.3})),
  RowFactory.create(Vectors.dense(-2.0, 2.3, 0.0))
);

Dataset<Row> dataset =
  spark.createDataFrame(data, (new StructType()).add(group.toStructField()));

VectorSlicer vectorSlicer = new VectorSlicer()
  .setInputCol("userFeatures").setOutputCol("features");

vectorSlicer.setIndices(new int[]{1}).setNames(new String[]{"f3"});
// or slicer.setIndices(new int[]{1, 2}), or slicer.setNames(new String[]{"f2", "f3"})

Dataset<Row> output = vectorSlicer.transform(dataset);

System.out.println(output.select("userFeatures", "features").first());

Python:
from pyspark.ml.feature import VectorSlicer
from pyspark.ml.linalg import Vectors
from pyspark.sql.types import Row

df = spark.createDataFrame([
    Row(userFeatures=Vectors.sparse(3, {0: -2.0, 1: 2.3}),),
    Row(userFeatures=Vectors.dense([-2.0, 2.3, 0.0]),)])

slicer = VectorSlicer(inputCol="userFeatures", outputCol="features", indices=[1])

output = slicer.transform(df)

output.select("userFeatures", "features").show()

RFormula

演算法介紹:

       RFormula通過R模型公式來選擇列。支援R操作中的部分操作,包括‘~’, ‘.’, ‘:’, ‘+’以及‘-‘,基本操作如下:

1. ~分隔目標和物件

2. +合併物件,“+ 0”意味著刪除空格

3. :互動(數值相乘,類別二值化)

4. . 除了目標外的全部列

假設a和b為兩列:

1. y ~ a + b表示模型y ~ w0 + w1 * a +w2 * b其中w0為截距,w1w2為相關係數。

2. y ~a + b + a:b – 1表示模型y ~ w1* a + w2 * b + w3 * a * b,其中w1w2w3是相關係數。

RFormula產生一個向量特徵列以及一個double或者字串標籤列。如果類別列是字串型別,它將通過StringIndexer轉換為double型別。如果標籤列不存在,則輸出中將通過規定的響應變數創造一個標籤列。

示例:

假設我們有一個DataFrame含有id,country, hourclicked四列:

id | country |hour | clicked

---|---------|------|---------

 7 | "US"    | 18  | 1.0

 8 | "CA"    | 12  | 0.0

 9 | "NZ"    | 15  | 0.0

如果我們使用RFormula公式clicked ~ country+ hour,則表明我們希望基於countryhour預測clicked,通過轉換我們可以得到如下DataFrame

id | country |hour | clicked | features         | label

---|---------|------|---------|------------------|-------

 7 | "US"    | 18  | 1.0     | [0.0, 0.0, 18.0] | 1.0

 8 | "CA"    | 12  | 0.0     | [0.0, 1.0, 12.0] | 0.0

 9 | "NZ"    | 15  | 0.0     | [1.0, 0.0, 15.0] | 0.0

呼叫示例:

Scala:

import org.apache.spark.ml.feature.RFormula

val dataset = spark.createDataFrame(Seq(
  (7, "US", 18, 1.0),
  (8, "CA", 12, 0.0),
  (9, "NZ", 15, 0.0)
)).toDF("id", "country", "hour", "clicked")
val formula = new RFormula()
  .setFormula("clicked ~ country + hour")
  .setFeaturesCol("features")
  .setLabelCol("label")
val output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show()

Java:
import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.feature.RFormula;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import static org.apache.spark.sql.types.DataTypes.*;

StructType schema = createStructType(new StructField[]{
  createStructField("id", IntegerType, false),
  createStructField("country", StringType, false),
  createStructField("hour", IntegerType, false),
  createStructField("clicked", DoubleType, false)
});

List<Row> data = Arrays.asList(
  RowFactory.create(7, "US", 18, 1.0),
  RowFactory.create(8, "CA", 12, 0.0),
  RowFactory.create(9, "NZ", 15, 0.0)
);

Dataset<Row> dataset = spark.createDataFrame(data, schema);
RFormula formula = new RFormula()
  .setFormula("clicked ~ country + hour")
  .setFeaturesCol("features")
  .setLabelCol("label");
Dataset<Row> output = formula.fit(dataset).transform(dataset);
output.select("features", "label").show();

Python:
from pyspark.ml.feature import RFormula

dataset = spark.createDataFrame(
    [(7, "US", 18, 1.0),
     (8, "CA", 12, 0.0),
     (9, "NZ", 15, 0.0)],
    ["id", "country", "hour", "clicked"])
formula = RFormula(
    formula="clicked ~ country + hour",
    featuresCol="features",
    labelCol="label")
output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show()

ChiSqSelector

演算法介紹:

       ChiSqSelector代表卡方特徵選擇。它適用於帶有類別特徵的標籤資料。ChiSqSelector根據類別的獨立卡方2檢驗來對特徵排序,然後選取類別標籤主要依賴的特徵。它類似於選取最有預測能力的特徵。

示例:

假設我們有一個DataFrame含有id,featuresclicked三列,其中clicked為需要預測的目標:

id | features              | clicked

---|-----------------------|---------

 7 | [0.0, 0.0, 18.0, 1.0] | 1.0

 8 | [0.0, 1.0, 12.0, 0.0] | 0.0

 9 | [1.0, 0.0, 15.0, 0.1] | 0.0

如果我們使用ChiSqSelector並設定numTopFeatures1,根據標籤clickedfeatures中最後一列將會是最有用特徵:

id | features              | clicked | selectedFeatures

---|-----------------------|---------|------------------

 7 | [0.0, 0.0, 18.0, 1.0] | 1.0     | [1.0]

 8 | [0.0, 1.0, 12.0, 0.0] | 0.0     | [0.0]

 9 | [1.0, 0.0, 15.0, 0.1] | 0.0     | [0.1]

呼叫示例:

Scala:

import org.apache.spark.ml.feature.ChiSqSelector
import org.apache.spark.ml.linalg.Vectors

val data = Seq(
  (7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
  (8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
  (9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
)

val df = spark.createDataset(data).toDF("id", "features", "clicked")

val selector = new ChiSqSelector()
  .setNumTopFeatures(1)
  .setFeaturesCol("features")
  .setLabelCol("clicked")
  .setOutputCol("selectedFeatures")

val result = selector.fit(df).transform(df)
result.show()
Java:
import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.feature.ChiSqSelector;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

List<Row> data = Arrays.asList(
  RowFactory.create(7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
  RowFactory.create(8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
  RowFactory.create(9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
);
StructType schema = new StructType(new StructField[]{
  new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
  new StructField("features", new VectorUDT(), false, Metadata.empty()),
  new StructField("clicked", DataTypes.DoubleType, false, Metadata.empty())
});

Dataset<Row> df = spark.createDataFrame(data, schema);

ChiSqSelector selector = new ChiSqSelector()
  .setNumTopFeatures(1)
  .setFeaturesCol("features")
  .setLabelCol("clicked")
  .setOutputCol("selectedFeatures");

Dataset<Row> result = selector.fit(df).transform(df);
result.show();
Python:
from pyspark.ml.feature import ChiSqSelector
from pyspark.ml.linalg import Vectors

df = spark.createDataFrame([
    (7, Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0,),
    (8, Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0,),
    (9, Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0,)], ["id", "features", "clicked"])

selector = ChiSqSelector(numTopFeatures=1, featuresCol="features",
                         outputCol="selectedFeatures", labelCol="clicked")

result = selector.fit(df).transform(df)
result.show()