兩種模型選擇和超引數調整方法及Spark MLlib使用示例(Scala/Java/Python)
機器學習除錯:模型選擇和超引數調整
模型選擇(又名超引數調整)
在機器學習中非常重要的任務就是模型選擇,或者使用資料來找到具體問題的最佳的模型和引數,這個過程也叫做除錯。除錯可以在獨立的如邏輯迴歸等估計器中完成,也可以在包含多樣演算法、特徵工程和其他步驟的管線中完成。使用者應該一次性除錯整個管線,而不是獨立的調整管線中的每個組成部分。
MLlib支援交叉驗證和訓練驗證分裂兩個模型選擇工具。使用這兩個工具要求包含如下物件:
1.估計器:待除錯的演算法或管線。
2.一系列引數表:可選引數,也叫做“引數網格”。
3.評估器:評估模型擬合程度的準則或方法。
模型選擇工具工作原理如下:
1.將輸入資料劃分為訓練資料和測試資料。
2.對每組訓練資料與測試資料對,對引數表集合,用相應引數來擬合估計器,得到訓練後的模型,再使用評估器來評估模型表現。
3.選擇效能表現最優模型對應引數表。
交叉驗證
交叉驗證將資料集劃分為若干子集分別地進行訓練和測試。如當k=3時,交叉驗證產生3個訓練資料與測試資料對,每個資料對使用2/3的資料來訓練,1/3的資料來測試。對於一組特定的引數表,交叉驗證計算基於三組不同訓練資料與測試資料對訓練得到的模型的評估準則的平均值。確定最佳引數表後,交叉驗證最後使用最佳引數表基於全部資料來重新擬合估計器。
示例:
注意對引數網格進行交叉驗證的成本是很高的。如下面例子中,引數網格hashingTF.numFeatures
Scala:
Java:import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.linalg.Vector import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} import org.apache.spark.sql.Row // Prepare training data from a list of (id, text, label) tuples. val training = spark.createDataFrame(Seq( (0L, "a b c d e spark", 1.0), (1L, "b d", 0.0), (2L, "spark f g h", 1.0), (3L, "hadoop mapreduce", 0.0), (4L, "b spark who", 1.0), (5L, "g d a y", 0.0), (6L, "spark fly", 1.0), (7L, "was mapreduce", 0.0), (8L, "e spark program", 1.0), (9L, "a e c l", 0.0), (10L, "spark compile", 1.0), (11L, "hadoop software", 0.0) )).toDF("id", "text", "label") // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. val tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words") val hashingTF = new HashingTF() .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(10) val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr)) // We use a ParamGridBuilder to construct a grid of parameters to search over. // With 3 values for hashingTF.numFeatures and 2 values for lr.regParam, // this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from. val paramGrid = new ParamGridBuilder() .addGrid(hashingTF.numFeatures, Array(10, 100, 1000)) .addGrid(lr.regParam, Array(0.1, 0.01)) .build() // We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance. // This will allow us to jointly choose parameters for all Pipeline stages. // A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. // Note that the evaluator here is a BinaryClassificationEvaluator and its default metric // is areaUnderROC. val cv = new CrossValidator() .setEstimator(pipeline) .setEvaluator(new BinaryClassificationEvaluator) .setEstimatorParamMaps(paramGrid) .setNumFolds(2) // Use 3+ in practice // Run cross-validation, and choose the best set of parameters. val cvModel = cv.fit(training) // Prepare test documents, which are unlabeled (id, text) tuples. val test = spark.createDataFrame(Seq( (4L, "spark i j k"), (5L, "l m n"), (6L, "mapreduce spark"), (7L, "apache hadoop") )).toDF("id", "text") // Make predictions on test documents. cvModel uses the best model found (lrModel). cvModel.transform(test) .select("id", "text", "probability", "prediction") .collect() .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") }
import java.util.Arrays;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.tuning.CrossValidator;
import org.apache.spark.ml.tuning.CrossValidatorModel;
import org.apache.spark.ml.tuning.ParamGridBuilder;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// Prepare training documents, which are labeled.
Dataset<Row> training = spark.createDataFrame(Arrays.asList(
new JavaLabeledDocument(0L, "a b c d e spark", 1.0),
new JavaLabeledDocument(1L, "b d", 0.0),
new JavaLabeledDocument(2L,"spark f g h", 1.0),
new JavaLabeledDocument(3L, "hadoop mapreduce", 0.0),
new JavaLabeledDocument(4L, "b spark who", 1.0),
new JavaLabeledDocument(5L, "g d a y", 0.0),
new JavaLabeledDocument(6L, "spark fly", 1.0),
new JavaLabeledDocument(7L, "was mapreduce", 0.0),
new JavaLabeledDocument(8L, "e spark program", 1.0),
new JavaLabeledDocument(9L, "a e c l", 0.0),
new JavaLabeledDocument(10L, "spark compile", 1.0),
new JavaLabeledDocument(11L, "hadoop software", 0.0)
), JavaLabeledDocument.class);
// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
Tokenizer tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words");
HashingTF hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol())
.setOutputCol("features");
LogisticRegression lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01);
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
// We use a ParamGridBuilder to construct a grid of parameters to search over.
// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
ParamMap[] paramGrid = new ParamGridBuilder()
.addGrid(hashingTF.numFeatures(), new int[] {10, 100, 1000})
.addGrid(lr.regParam(), new double[] {0.1, 0.01})
.build();
// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
// is areaUnderROC.
CrossValidator cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new BinaryClassificationEvaluator())
.setEstimatorParamMaps(paramGrid).setNumFolds(2); // Use 3+ in practice
// Run cross-validation, and choose the best set of parameters.
CrossValidatorModel cvModel = cv.fit(training);
// Prepare test documents, which are unlabeled.
Dataset<Row> test = spark.createDataFrame(Arrays.asList(
new JavaDocument(4L, "spark i j k"),
new JavaDocument(5L, "l m n"),
new JavaDocument(6L, "mapreduce spark"),
new JavaDocument(7L, "apache hadoop")
), JavaDocument.class);
// Make predictions on test documents. cvModel uses the best model found (lrModel).
Dataset<Row> predictions = cvModel.transform(test);
for (Row r : predictions.select("id", "text", "probability", "prediction").collectAsList()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}
Python:
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
# Prepare training documents, which are labeled.
training = spark.createDataFrame([
(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0),
(4, "b spark who", 1.0),
(5, "g d a y", 0.0),
(6, "spark fly", 1.0),
(7, "was mapreduce", 0.0),
(8, "e spark program", 1.0),
(9, "a e c l", 0.0),
(10, "spark compile", 1.0),
(11, "hadoop software", 0.0)
], ["id", "text", "label"])
# Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
# We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
# This will allow us to jointly choose parameters for all Pipeline stages.
# A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
# We use a ParamGridBuilder to construct a grid of parameters to search over.
# With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
# this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
paramGrid = ParamGridBuilder() \
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
.addGrid(lr.regParam, [0.1, 0.01]) \
.build()
crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=2) # use 3+ folds in practice
# Run cross-validation, and choose the best set of parameters.
cvModel = crossval.fit(training)
# Prepare test documents, which are unlabeled.
test = spark.createDataFrame([
(4, "spark i j k"),
(5, "l m n"),
(6, "mapreduce spark"),
(7, "apache hadoop")
], ["id", "text"])
# Make predictions on test documents. cvModel uses the best model found (lrModel).
prediction = cvModel.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
print(row)
訓練驗證分裂
除了交叉驗證以外,Spark還提供訓練驗證分裂用以超引數調整。和交叉驗證評估K次不同,訓練驗證分裂只對每組引數評估一次。因此它計算代價更低,但當訓練資料集不是足夠大時,其結果可靠性不高。
與交叉驗證不同,訓練驗證分裂僅需要一個訓練資料與驗證資料對。使用訓練比率引數將原始資料劃分為兩個部分。如當訓練比率為0.75時,訓練驗證分裂使用75%資料以訓練,25%資料以驗證。
與交叉驗證相同,確定最佳引數表後,訓練驗證分裂最後使用最佳引數表基於全部資料來重新擬合估計器。
示例:
Scala:
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
// Prepare training and test data.
val data = spark.read.format("libsvm").load("data/mllib/sample_linear_regression_data.txt")
val Array(training, test) = data.randomSplit(Array(0.9, 0.1), seed = 12345)
val lr = new LinearRegression()
// We use a ParamGridBuilder to construct a grid of parameters to search over.
// TrainValidationSplit will try all combinations of values and determine best model using
// the evaluator.
val paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam, Array(0.1, 0.01))
.addGrid(lr.fitIntercept)
.addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
.build()
// In this case the estimator is simply the linear regression.
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
val trainValidationSplit = new TrainValidationSplit()
.setEstimator(lr)
.setEvaluator(new RegressionEvaluator)
.setEstimatorParamMaps(paramGrid)
// 80% of the data will be used for training and the remaining 20% for validation.
.setTrainRatio(0.8)
// Run train validation split, and choose the best set of parameters.
val model = trainValidationSplit.fit(training)
// Make predictions on test data. model is the model with combination of parameters
// that performed best.
model.transform(test)
.select("features", "label", "prediction")
.show()
Java:
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.regression.LinearRegression;
import org.apache.spark.ml.tuning.ParamGridBuilder;
import org.apache.spark.ml.tuning.TrainValidationSplit;
import org.apache.spark.ml.tuning.TrainValidationSplitModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
Dataset<Row> data = spark.read().format("libsvm")
.load("data/mllib/sample_linear_regression_data.txt");
// Prepare training and test data.
Dataset<Row>[] splits = data.randomSplit(new double[] {0.9, 0.1}, 12345);
Dataset<Row> training = splits[0];
Dataset<Row> test = splits[1];
LinearRegression lr = new LinearRegression();
// We use a ParamGridBuilder to construct a grid of parameters to search over.
// TrainValidationSplit will try all combinations of values and determine best model using
// the evaluator.
ParamMap[] paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam(), new double[] {0.1, 0.01})
.addGrid(lr.fitIntercept())
.addGrid(lr.elasticNetParam(), new double[] {0.0, 0.5, 1.0})
.build();
// In this case the estimator is simply the linear regression.
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
.setEstimator(lr)
.setEvaluator(new RegressionEvaluator())
.setEstimatorParamMaps(paramGrid)
.setTrainRatio(0.8); // 80% for training and the remaining 20% for validation
// Run train validation split, and choose the best set of parameters.
TrainValidationSplitModel model = trainValidationSplit.fit(training);
// Make predictions on test data. model is the model with combination of parameters
// that performed best.
model.transform(test)
.select("features", "label", "prediction")
.show();
Python:
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.regression import LinearRegression
from pyspark.ml.tuning import ParamGridBuilder, TrainValidationSplit
# Prepare training and test data.
data = spark.read.format("libsvm")\
.load("data/mllib/sample_linear_regression_data.txt")
train, test = data.randomSplit([0.7, 0.3])
lr = LinearRegression(maxIter=10, regParam=0.1)
# We use a ParamGridBuilder to construct a grid of parameters to search over.
# TrainValidationSplit will try all combinations of values and determine best model using
# the evaluator.
paramGrid = ParamGridBuilder()\
.addGrid(lr.regParam, [0.1, 0.01]) \
.addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0])\
.build()
# In this case the estimator is simply the linear regression.
# A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
tvs = TrainValidationSplit(estimator=lr,
estimatorParamMaps=paramGrid,
evaluator=RegressionEvaluator(),
# 80% of the data will be used for training, 20% for validation.
trainRatio=0.8)
# Run TrainValidationSplit, and choose the best set of parameters.
model = tvs.fit(train)
# Make predictions on test data. model is the model with combination of parameters
# that performed best.
prediction = model.transform(test)
for row in prediction.take(5):
print(row)