RXD and math (hdu 6063) 2017多校第三場
RXD and math
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 310 Accepted Submission(s): 160
Problem Description
RXD is a good mathematician.
One day he wants to calculate:
output the answer module .
are different prime numbers
Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers .
Output
For each test case, output "Case #x: y", which means the test case number and the answer.
Sample Input
10 10
Sample Output
Case #1: 999999937
Source
2017 Multi-University Training Contest - Team 3
首先看出來u()函式是莫比烏斯函式
然後手動打表找出來的規律,發現結果為n的k次方
利用快速冪直接求就可以了
#include<cstdio> #include<iostream> using namespace std; const long long int mod=1e9+7; long long int fast_pow_mod(long long int a,long long int b) { long long int res=1; while(b) { if(b&1) res=res*a%mod; a=((a%mod)*(a%mod))%mod; b>>=1; } return res; } int main() { long long int n,k; long long int cas=1; while(scanf("%lld%lld",&n,&k)!=EOF) { long long int w; w=fast_pow_mod(n,k); printf("Case #%lld: %lld\n",cas++,w%mod); } return 0; }
不是數學方面的,直接從網上撈了個快速冪模板發現wa了一次,後來自己寫了一遍,發現是爆long long 了,過程中也要mod