CF-Codeforces Round #483 (Div. 2) D. XOR-pyramid 區間DP
For an array b of length m we define the function f as
For example, f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15
You are given an array a and a few queries. Each query is represented as two integers l and r. The answer is the maximum value of f on all continuous subsegments of the array a
The first line contains a single integer n
(1≤n≤5000) — the length of a.The second line contains n integers a1,a2,…,an (0≤ai≤230−1) — the elements of the array.The third line contains a single integer q (1≤q≤100000) — the number of queries.Each of the next qlines contains a query represented as two integers l
Print q lines — the answers for the queries.
ExamplesInput3 8 4 1 2 2 3 1 2Output
5 12Input
6 1 2 4 8 16 32 4 1 6 2 5 3 4 1 2Output
60 30 12 3Note
In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.
In second sample, optimal segment for first query are [
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 5010
int n,q,l,r;
__int64 ans[N][N],dp[N][N],a[N];
int main()
{
while(~scanf("%d",&n))
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
{
scanf("%I64d",&a[i]);
ans[i][i]=a[i];
dp[i][i]=a[i];
}
for(int l=1; l<n; l++)
{
for(int i=1; i+l<=n; i++)
{
int j=l+i;
ans[i][j]=ans[i][j-1]^ans[i+1][j];
dp[i][j]=max(ans[i][j],max(dp[i+1][j],dp[i][j-1]));
}
}
scanf("%d",&q);
while(q--)
{
scanf("%d%d",&l,&r);
printf("%I64d\n",dp[l][r]);
}
}
return 0;
}