spark SQL學習(案例-統計每日uv)
阿新 • • 發佈:2019-01-10
需求:統計每日uv
package wujiadong_sparkSQL import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.sql.types._ import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.functions._ /** * Created by Administrator on 2017/3/6. */ object DailyUV { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("dailyuv") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) val userAccesslog = Array( "2017-01-01,1122", "2017-01-01,1122", "2017-01-01,1123", "2017-01-01,1124", "2017-01-01,1124", "2017-01-02,1122", "2017-01-01,1121", "2017-01-01,1123", "2017-01-01,1123" ) val AccesslogRDD = sc.parallelize(userAccesslog,2) //val AccesslogRDD = sc.textFile("hdfs://master:9000/student/2016113012/data/userAccesslog.txt").map(_.split(",")) //通過StructType直接指定每個欄位的schema val schema = StructType( Array( StructField("date",StringType,true), StructField("userid",IntegerType,true) ) ) //j將普通rdd對映到rowRDD val RowRDD = AccesslogRDD.map(log => Row(log.split(",")(0),log.split(",")(1).toInt)) //將schema資訊對映到RowRDD上,即建立dataframe val df = sqlContext.createDataFrame(RowRDD,schema) //要使用spark SQL的內建函式需匯入SQLContext下的隱士轉換 import sqlContext.implicits._ df.groupBy("date") //根據日期分組 .agg('date,countDistinct('userid))//根據日期聚合,然後根據使用者id,注意這裡的語法是‘引號 .map(row => Row(row(1),row(2))).collect().foreach(println) //uv含義和業務,每天都有很多使用者訪問,每個使用者可能每天訪問很多次,uv指的是對使用者進行去重以後的訪問次數 } }
執行結果
[email protected]:~/wujiadong$ spark-submit --class wujiadong_sparkSQL.DailyUV --executor-memory 500m --total-executor-cores 2 /home/hadoop/wujiadong/wujiadong.spark.jar 17/03/06 21:01:52 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 17/03/06 21:01:53 WARN SparkConf: SPARK_CLASSPATH was detected (set to ':/home/hadoop/bigdata/hive/lib/mysql-connector-java-5.1.26-bin.jar'). This is deprecated in Spark 1.0+. Please instead use: - ./spark-submit with --driver-class-path to augment the driver classpath - spark.executor.extraClassPath to augment the executor classpath 17/03/06 21:01:53 WARN SparkConf: Setting 'spark.executor.extraClassPath' to ':/home/hadoop/bigdata/hive/lib/mysql-connector-java-5.1.26-bin.jar' as a work-around. 17/03/06 21:01:53 WARN SparkConf: Setting 'spark.driver.extraClassPath' to ':/home/hadoop/bigdata/hive/lib/mysql-connector-java-5.1.26-bin.jar' as a work-around. 17/03/06 21:01:55 INFO Slf4jLogger: Slf4jLogger started 17/03/06 21:01:55 INFO Remoting: Starting remoting 17/03/06 21:01:56 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://
[email protected]:57493] 17/03/06 21:01:57 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041. 17/03/06 21:01:58 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set. [2017-01-01,4] [2017-01-02,1] 17/03/06 21:02:21 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon. 17/03/06 21:02:21 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports. 17/03/06 21:02:21 INFO RemoteActorRefProvider$RemotingTerminator: Remoting shut down.