linux 系統 eclipse提交job到hadoop叢集上的一些坑
自從學習hadoop開始,一直就想找到一個辦法,能提交一個job到hadoop叢集上,而不是export jar包,然後在hadoop叢集上執行命令 hadoop jar
今天算是被我找到了,順帶還發現一個local模式
先上hadoop的經典的wordcount程式碼,這個程式碼是從官網上摘來的
package com.hit.hadoop;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
之後就是一個一個tool的程式碼,具體如下
package com.hit.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import com.hit.hadoop.WordCount.IntSumReducer;
import com.hit.hadoop.WordCount.TokenizerMapper;
public class World extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
Job job = Job.getInstance(getConf(), "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
return 0;
}
public static void main(String[] args)throws Exception {
String a[] = new String[]{"/zhonghui/input","/zhonghui/output"};
Configuration conf = new Configuration();
conf.addResource("core-site.xml");
conf.addResource("hdfs-site.xml");
conf.addResource("yarn-site.xml");
conf.addResource("mapred-site.xml");
ToolRunner.run(conf, new World(), a);
}
}
上面程式碼中的core-site.xml,hdfs-site.xml,yarn-site.xml,mapred-site.xml是從叢集上拷貝過來的。
但是就這麼整,你的程式碼一般都會出現各種問題,比如能提交job到yarn上,但是報class not found錯誤
解決辦法
在yarn-site.xml配置檔案中新增
<property><name>yarn.application.classpath</name><value>
$HADOOP_CONF_DIR, $HADOOP_COMMON_HOME/share/hadoop/common/*, $HADOOP_COMMON_HOME/share/hadoop/common/lib/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*, $HADOOP_YARN_HOME/share/hadoop/yarn/*, $HADOOP_YARN_HOME/share/hadoop/yarn/lib/*
</value></property>
在mapred-site.xml配置檔案中新增
<property><name>mapreduce.application.classpath</name><value>
$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*
</value></property>
寫上這兩個在你自己eclipse工程中的配置檔案。就可以提交任務成功了。
另外說一個本地模式,本地模式,可以避免一些jar包問題,或者測試比較方便。
開啟的方式是,在mapred-site.xml中新增
<property><name>mapreduce.framework.name</name><value>local</value></property>
即可