1. 程式人生 > >形變塊匹配跟蹤(1):配準跟蹤與幾何約束_bg

形變塊匹配跟蹤(1):配準跟蹤與幾何約束_bg

參看論文:Fast and robust 3D ultrasound registration – Block and game theoretic matching

期刊水平:Medical imaging analysis (MIA)

投稿單位:伊拉斯謨醫學院 計算醫學中心

文章作者設計了一種全域性稠密塊匹配的跟蹤演算法,原理是序列配準,核心是幾何約束下的outliers reject策略。

1. 摘要

Real-time 3D US has potential for image guidance in minimally invasive liver interventions. However, motion caused by patient breathing makes it hard to visualize a localized area, and to maintain alignment with pre-operative information. In this work we develop a fast affine registration framework to compensate in real-time for liver motion/displacement due to breathing. The affine registration of two consecutive ultrasound volumes in time is performed using block-matching. For a set of evenly distributed points in one volume and their correspondences in the other volume, we propose a robust outlier rejection method to reject false matches. The inliers are then used to determine the affine transformation. The approach is evaluated on 13 4D ultrasound sequences acquired from 8 subjects. For 91 pairs of 3D ultrasound volumes selected from these sequences, a mean registration error of 1.8 mm is achieved. A graphics processing unit (GPU) implementation runs the 3D US registration at 8 Hz.

在微創肝臟介入治療中,實時的3D超聲有潛力成為影像導航工具。然而,由於患者呼吸引發的運動使得觀察一個固定點、並與術前的資訊匹配變得很難。該工作中,作者開發了一個快速的彷射框架實時的補償由於呼吸運動引發的肝臟運動偏移。兩個連續的3D立體之間的的彷射配準是通過塊匹配完成的。對於兩個3D立體中均勻分佈的點集,作者提出了一種魯棒性的離群排斥方法,拒絕錯誤的匹配資訊。inliers(也就是正確的匹配資訊)被用於確定仿射變換矩陣。作者從8位受試者中採集到了13個超聲序列,從這些序列中選擇了91對3D立體,實現了1.8mm的配準誤差。此外,作者還採用了GPU對3D超聲之間的配準進行加速,最終實現了8Hz的速度。

2. 背景

1.1 臨床動機

Replacing classical surgical interventions by minimally invasive alternatives is beneficial for the patient and the health care system, as it has large potential for reducing complication rates, minimizing surgical trauma, and reducing hospital stay. The minimally invasive character, however, makes these interventions challenging for the clinician. There is no direct eyesight on the target region and conventional interventional imaging modalities have limited capabilities. Furthermore the user interfacing and interaction with the equipment involved often is not ergonomically well-designed, and does not match the interventional work flow well. Image guidance is crucial in minimally invasive interventions. Image guidance can be based on preoperative imaging data (mostly magnetic resonance imaging and computed tomography) or intraoperative imaging data (X-ray, ultrasound). Hybrid approaches can also be useful, in which the diagnostic quality of preoperative images can be combined with the real-time nature of intraoperative images (also known as fusion imaging).

Four dimensional (4D) ultrasound (US) is a relatively novel imaging modality that currently is mainly used for diagnosis.
用微創取代傳統的手術干預對患者和健康監護系統非常有利,因為微創手術可以降低病症的發生率、最小化手術創傷和減少住院時間。然而,由於微創手術本身的原因,使得這種介入方式在臨床上面臨挑戰。醫生並不能看見目標區域,傳統的介入成像模式更是能力有限。此外,用於介入手術治療的器械也與手術流程不相匹配。影象導航在微創介入手術中非常重要。影象導航可以基於術前的影象資料(主要是MR和CT)以及術中影像資料(X-ray,超聲)。混合影像的方法也是非常有用的,將術前影像和術中影像聯合使用(就是影象配準+影象融合)。4D超聲是一種非常新的成像模態,當前主要用於診斷中。

Radiofrequency ablation (RFA) and the transjugular intrahepatic portosystemic shunt (TIPS) procedure are examples of percutaneous minimally invasive image-guided interventions which are used more and more as alternative to surgical procedures. 4D US has large potential in assisting the clinicians in these procedures, as it provides real-time three dimensional (3D) vision. During these procedures the clinician often holds the US probe steady to visualize a localized area in the liver US volume. Breathing shifts the region of interest and makes it difficult to constantly focus on a region of interest, more so in the presence of a catheter. The purpose of our work is to develop a technique suited for fast 3D ultrasound registration during image guided minimally invasive intervention to compensate breathing motion. In addition, our approach would help in keeping the registration up to date in US fusion imaging.


1.2 相關工作

理解一下影象配準技術:

Image registration is the process of aligning two or more frames of the same or similar scene. The basic input data to the
registration process are two images: the fixed image and the moving image.These approaches are either feature-based
or intensity-based. Intensity-based methods compare intensity patterns in images via similarity metrics, registering either images or sub images. If sub images are registered, centers of corresponding sub images are treated as corresponding feature points. 影象配準是指對齊兩個或多個具有相同或相似的場景的幀。配準過程需要輸入兩張影象,參考影象和移動影象。這一類方法可以分為基於特徵和基於灰度的配準方法。基於灰度的方法需要通過相似性度量計算兩個影象灰度模式之間的距離。配準可以再影象和影象子塊之間進行。

  • 相似性度量

誤差平方和 Sum of Square Different SSD; 絕對誤差和 Sum of absolut Different, SAD; 歸一化互相關 Normalization Cross-correlation. 互資訊 Mutual Information, MI.

互資訊提出文獻:Mattes, D., Haynor, D.R., Vesselle, H., Lewellyn, T.K., Eubank, W., 2001. Nonrigid multimodality image registration, pp. 1609–1620. http://dx.doi.org/10.1117/12.431046.

互資訊最適合用於US-US配準:Kaar, M., Figl, M., Hoffmann, R., Birkfellner, W., Hummel, J., Stock, M., Georg, D., Goldner, G., 2013. Automatic patient alignment system using 3D ultrasound. Med. Phys. 40. http://dx.doi.org/10.1118/1.4795129.

Vijayan研究了4D超聲序列離線分段配準的工作:Vijayan, S., Klein, S., Hofstad, E., Lindseth, F., Ystgaard, B., Lang, T., 2013. Validation of a non-rigid registration method for motion compensation in 4D ultrasound of the liver. In: IEEE ISBI2013. Work done in collaboration with NTNU/SINTEF, Trondheim, Norway.

  • 特徵描述

基於屬性向量:Foroughi, P., Abolmaesumi, P., Hashtrudi-Zaad, K., 2006. Intra-subject elastic registration of 3D ultrasound images. Med. Image Anal. 10, 713–725.

基於資訊理論的特徵描述子:Wang, Z.W., Slabaugh, G.G., Unal, G.B., Fang, T., 2007. Registration of ultrasound images using an information-theoretic feature detector. In: ISBI, pp. 736–739.

3D SIFT描述子:

Ni, D., Chui, Y.P., Qu, Y., Yang, X.S., Qin, J., Wong, T.T., Ho, S.S.H., Heng, P.A., 2009. Reconstruction of volumetric ultrasound panorama based on improved 3D sift. Comp. Med. Imag. Graph. 33, 559–566.

Skibbe, H., Reisert, M., Schmidt, T., Brox, T., Ronneberger, O., Burkhardt, H., 2012. Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1563–1575.

區域性相位描述子:Grau, V., Becher, H., Noble, J.A., 2007. Registration of multiview real-time 3-D echocardiographic sequences. IEEE Trans. Med. Imag. 26, 1154–1165.
基於混合特徵配準:Cifor, A., Risser, L., Chung, D., Anderson, E., Schnabel, J., 2013. Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images. IEEE Trans. Med. Imag. 32, 1647–1656. http://dx.doi.org/10.1109/ TMI.2013.2262055.

在最近幾年基於灰度強度的配準方法在所有的基於特徵配準裡面是最火的。作者認為,從資訊理論角度來看,只要是特徵提取就一定會存在資訊損失。但是,如果考慮到資料噪聲比較嚴重或者目標發生了形變,開發抵抗這種不變性的特徵描述子還是非常重要的。有效的特徵可以提升不同目標的判別能力,同時降低資料的維度。目前也存在一些實時3D-3D配準的工作。

基於小波特徵的多視角融合:Rajpoot, K., Noble, J.A., Grau, V., Szmigielski, C., Becher, H., 2009. Multiview RT3D echocardiography image fusion. In: FIMH, pp. 134–143.

SSD+灰度特徵:Øye, O.K., Wein, W., Ulvang, D.M., Matre, K., Viola, I., 2012. Real time image-based tracking of 4D ultrasound data. In: MICCAI (1), pp. 447–454.

特徵對齊:Schneider, R.J., Perrin, D.P., Vasilyev, N.V., Marx, G.R., del Nido, P.J., Howe, R.D., 2012. Real-time image-based rigid registration of three-dimensional ultrasound. Med. Image Anal. 16, 402–414.


2.3 靈感來源及貢獻

Our ultrasound registration approach is motivated by methods described in ultrasound speckle tracking literature, see Harris et al. (2010). A speckle pattern contains densely positioned targets created by the interaction of ultrasonic beams and the tissue.
In an ideal scenario, if all the speckle patterns are tracked accurately, the speckle pattern correspondences can be used to estimate the transformation. However in practice not all of the speckle patterns will be tracked well, e.g. because of acoustic shadowing or due to motion decorrelation。

在理想環境中,如果斑點模式可以準確的被跟蹤,我們可以利用斑點間的相關性直接進行變換矩陣估計。然而,在實際中,並不是所有的斑點都可以很好的跟蹤,特別是在聲影和運動去相關環境下。

Liang, T., Yung, L.S., Yu, W., 2013. On feature motion decorrelation in ultrasound speckle tracking. IEEE Trans. Med. Imag. 32, 435–448.

To address these issues and to remove false matches, we employ a matching approach, inspired by game theory, to retain only pairs that have been matched correctly. This outlier rejection is formulated in a game theoretic framework. Speed is an important aspect of our application, and a matching strategy reduces over reliance on selecting the speckle patterns.

為了解決這個問題(去掉由於聲影和運動去相關造成的誤匹配)。作者受到博弈論的啟發,僅保留正確的塊匹配對。並採用博弈論框架剔除誤匹配情況。在實際應用過程中,速度也很重要,作者也採用了一個匹配策略減少了對匹配策略的依賴。

In this work, we propose a novel, fast solution to the 3D ultrasound liver registration problem. Our contributions are fourfold: first, we integrate a fast outlier rejection approach to improve the result of a block-matching approach, second, we develop a method to use both the geometric consistency and the appearance information from block-matching to reject outliers, third, the (non-homogeneous quadratic) optimization function of the outlier rejection module is mapped to a homogeneous quadratic function to be solved efficiently using replicator dynamics, and fourth, we perform an extensive evaluation on real 3D imaging data. Finally, we demonstrate that the method is able to perform registrations at 8 Hz.
這篇文章,作者對3D超聲肝臟配準問題提出了一個全新的、快速的解決方案。作者說他們的貢獻集中在四個方面:

1.作者的演算法集成了一個快速的離群排斥方法來提高塊匹配的結果;

2.作者採用形貌約束和幾何約束設計了離群排斥方法;

3.離群排斥策略中的非齊次二次函式被對映到齊次二次優化問題,並使用 Replicator Dynamics進行求解;

4.作者在真實的3D資料上進行了大量的實驗。

Comment:其實吧,核心問題就一個...如何設計離群排斥演算法。

3. 作者的測試結果

先看一下作者的測試結果:

圖1: 左邊一列是配準之後的結果;中間的是參考影象;右邊的是浮動影象。我們能夠初步得出幾條結論:

1.配準的效果還是有的.... 

2.出現錯誤匹配的情況還確實不在少數...

3.基於塊匹配的結果必然面臨嚴重的邊界效應...

相關推薦

形變匹配跟蹤(1)跟蹤幾何約束_bg

參看論文:Fast and robust 3D ultrasound registration – Block and game theoretic matching 期刊水平:Medical imaging analysis (MIA) 投稿單位:伊拉斯謨醫學院 計算醫

HBase學習總結(1)HBase的下載安裝

oot 停止 微信公眾號 profile jdk1 variable jdk oop lib (HBase是一種數據庫:Hadoop數據庫,它是一種NoSQL存儲系統,專門設計用來高速隨機讀寫大規模數據。本文介紹HBase的下載與安裝的整個過程。) 一

Day-1初識開發板基礎知識

總線 系列 控制系統 mage 只讀 上拉 相同 ont 頻率   買的這款51,ARM,AVR三合一的單片機,也不知道後面具體使用會不會有問題,先玩玩看吧。 ---------------------------------------------------------

Mycat讀寫分離以及拆庫拆表綜合實驗1主從復制多源復制

mycat mysql 讀寫分離 拆庫拆表 主從復制 數據規劃: Haproxy 集群 haproxy01 node127 192.168.31.127 haproxy02 node128 192.168.31.128 Mycat集群 mycat01 node119 192.168.31.

機器學習筆記1機器學習定義分類

機器學習定義與分類 Andrew Ng機器學習課程學習筆記1 定義 Arthur Samuel (1959) Machine Learning: Field of study that gives computers the ability to l

Caffe原始碼理解1Blob儲存結構設計

Blob作用 A Blob is a wrapper over the actual data being processed and passed along by Caffe, and also under the hood provides synchronization capability b

OpenStack Neutron (1)外部網路建立分析

OpenStack中建立的instance想要訪問外網必須要建立外部網路(即provider network),然後通過虛擬路由器的連線實現。Neutron是通過網橋的方式實現外網的訪問,在建立外部網路之前檢視網路配置情況:[email protected]:~#

C++ Again(1)檔案讀入寫出

本文章的實現參考自<C++ Primer>第一章第5節。 當前的任務是實現一個C++程式,能夠從某個檔案讀入字串並將字串寫入到另一個檔案中。 實現程式碼如下: #include <iostream> #include <fstream>

《視覺SLAM十四講精品總結》6.1VO—— 2D-2D對極約束求位姿R、t

本節內容已在筆記本進行推導分為2D-2D、3D-2D、3D-3D。 三位場景中的同一個三維點在不同視角下的像點存在著一種約束關係:對極約束,基礎矩陣E是這種約束關係的代數表示,並且這種約束關係獨立與場景的結構,只依賴與相機的內參K和外參R t(相對位姿)。 1、可以通過通

1JAVA的概念環境的搭建(MacOS)

標題格式:    標題數位X:標題X正文格式:    字型:仿宋    大小:小(14px)提示:    本章安裝步驟部分僅適用於MacOS1    JAVA相關概念1.1    JAVA分類JavaSe=J2SE    java平臺標準版本JavaEE=J2EE    ja

資料結構1認識資料結構演算法

程式 + 文件 = 軟體演算法 + 資料結構 = 程式資料結構與演算法的理論基礎離散數學中的圖論、集合論和關係論等。資料結構課程的內容來源於圖論、作業系統、編譯系統、編碼理論及檢索與排序技術等。1.什麼是資料結構?非數值型程式設計中資料的組織方式及其處理的演算法資料結構的三個

影象】基於灰度的模板匹配演算法(一)MAD、SAD、SSD、MSD、NCC、SSDA、SATD演算法

簡介:        本文主要介紹幾種基於灰度的影象匹配演算法:平均絕對差演算法(MAD)、絕對誤差和演算法(SAD)、誤差平方和演算法(SSD)、平均誤差平方和演算法(MSD)、歸一化積相關演算法(NCC)、序貫相似性檢測演算法(SSDA)、hadamard變換演算法(

【影象】基於灰度的模板匹配演算法(三)劃分強度一致法(PIU)

簡介: 前面幾篇文章介紹了一些比較基本的基於灰度的影象配准算法: 本文將介紹一種類似的相似度測量演算法,叫做劃分強度一致法(Partitioned Intensity Uniformity,PI

CSS知識點1元素/行內元素/行內元素的區別

HTML可以將元素分類方式分為行內元素、塊狀元素和行內塊狀元素三種。首先需要說明的是,這三者是可以互相轉換的,使用display屬效能夠將三者任意轉換:   (1)display:inline;轉換為行內元素   (2)display:block;轉換為塊狀元素   (3)display:i

ES6精解(1)let、const、級作用域

let命令 ES6新增了let命令,跟var類似,都是用來宣告變數的 1.不允許重複宣告 { let a = 1; let a = 2;//報錯 } 2.不存在變數提升 { console.log(b);//報錯

4.1應用除錯一記錄棧跟蹤日誌

Log.d(TAG, "Updating question text ", new Exception()); 在可能出現錯誤的地方加上這行程式碼 ,Log.d(String, String, Throwable)方法記錄並輸出整個棧跟蹤日誌 記錄棧跟蹤日誌雖然是個強大的工具,但也

PL/SQL知識總結(1)PL/SQL結構和流程控制語句

前一段時間系統學習了Oracle PL/SQL的有關知識,內容有點多,所以覺得自己要總結一下,順便回顧,大家共同學習。 PL/SQL的概念 PL/SQL是 Procedure Language & Structured Query Languag

SLAM入門之視覺里程計(1)特徵點的匹配

SLAM 主要分為兩個部分:前端和後端,前端也就是視覺里程計(VO),它根據相鄰影象的資訊粗略的估計出相機的運動,給後端提供較好的初始值。VO的實現方法可以根據是否需要提取特徵分為兩類:基於特徵點的方法,不使用特徵點的直接方法。 基於特徵點的VO執行穩定,對光照、動態物體不敏感。 影象特徵點的提取和匹配是計算

VTK修煉之道57圖形基本操作進階_點雲技術(LandMark標記點演算法和座標系顯示方法)

#include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); VTK_MODULE_INIT(vtkRenderingFreeType); VTK_MODULE_INIT(vtkInteractionStyle); #include

C++“”標準庫Boost學習指南(1)智慧指標Boost.smart_ptr

我們學習C++都知道智慧指標,例如STL中的std::auto_ptr,但是為什麼要使用智慧指標,使用它能帶給我們什麼好處呢? 最簡單的使用智慧指標可以不會因為忘記delete指標而造成記憶體洩露。還有如果我們開發或者使用第三方的lib中的某些函式需要返回指標,這樣的返回的