tensorflow-神經網路識別手寫數字
阿新 • • 發佈:2019-01-12
- 資料下載連線:http://yann.lecun.com/exdb/mnist/
- 下載t10k-images-idx3-ubyte.gz;t10k-labels-idx1-ubyte.gz;train-images-idx3-ubyte.gz;train-labels-idx1-ubyte.gz
- 簡單神經網路識別手寫數字
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 資料下載連線:http://yann.lecun.com/exdb/mnist/
# 下載t10k-images-idx3-ubyte.gz;t10k-labels-idx1-ubyte.gz;train-images-idx3-ubyte.gz;train-labels-idx1-ubyte.gz
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("is_train", 1, "指定程式是訓練還是預測") # 指定1是訓練模型,指定0是進行對測試集預測
def full_connected():
'''
簡單神經網路對手寫數字圖片進行識別
:return: None
'''
# 獲取真實的資料
mnist = input_data.read_data_sets("./data/mnist/", one_hot=True)
# 1. 建立資料佔位符 x[None, 784] y[None, 10]
with tf.variable_scope("data"):
x = tf.placeholder(tf.float32, [None,784])
y_true = tf.placeholder(tf.int32, [None, 10])
# 2. 建立一個全連線層得神經網路 w[784,10] b[10]
with tf.variable_scope("fc_model"):
# 隨機初始化權重和偏置
weight = tf.Variable(tf.random_normal([784,10], mean= 0.0, stddev=1.0), name="w")
bias = tf.Variable(tf.constant(0.0, shape=[10]))
# 預測None的輸出結果 [None, 784] * [784, 10] + [10] = [None, 10]
y_predict = tf.matmul(x, weight) + bias
# 3. 求出所有樣本的損失,然後求平均值
with tf.variable_scope("soft_cross"):
# 求平均交叉熵損失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))
# 4. 梯度下降求出損失
with tf.variable_scope("optimazer"):
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 5. 計算準確率
with tf.variable_scope("acc"):
equal_list = tf.equal(tf.arg_max(y_true,1), tf.arg_max(y_predict,1))
accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
# 收集變數
tf.summary.scalar("losses", loss)
tf.summary.scalar("acc", accuracy)
# 高緯度變數收集
tf.summary.histogram("weights", weight)
tf.summary.histogram("biases", bias)
# 定義一個合併變數得op
merged = tf.summary.merge_all()
# 建立一個saver儲存模型
saver = tf.train.Saver()
# 6.定義一個初始化變數的op
init_op = tf.global_variables_initializer()
# 6. 開啟會話進行訓練
with tf.Session() as sess:
# 初始化變數
sess.run(init_op)
# 建立events檔案,然後寫入
filewriter = tf.summary.FileWriter("./summary/", graph=sess.graph)
if FLAGS.is_train == 1:
# 迭代步數訓練,更新引數預測
for i in range(2000):
# 取出真是存在得特徵值和目標值
mnist_x, mnist_y = mnist.train.next_batch(100)
sess.run(train_op, feed_dict={x: mnist_x, y_true:mnist_y})
# 寫入每步訓練得值
summary = sess.run(merged, feed_dict={x: mnist_x, y_true:mnist_y})
filewriter.add_summary(summary, i)
print("訓練第 %d 步,準確率為:%f " %(i, sess.run(accuracy, feed_dict={x: mnist_x, y_true:mnist_y})))
# 儲存模型
saver.save(sess, "./data/ckpt/fc_model")
else:
# 載入模型
saver.restore(sess, "./data/ckpt/fc_model")
# 如果是0,做出預測
for i in range(100):
# 每次測試一張圖片
x_test, y_test = mnist.test.next_batch(1)
print("第 %d 張圖片,手寫數字目標是 %d, 預測結果是:%d" % (
i,
tf.argmax(y_test, 1).eval(),
tf.argmax(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1).eval()
))
return None
if __name__ == '__main__':
full_connected()
- 卷積神經網路識別手寫數字
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def weight_variables(shape):
'''
初始化權重
:param shape:
:return: w 初始化的權重
'''
w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
return w
def bias_variables(shape):
'''
初始化偏置
:param shape:
:return: b 初始化的偏置
'''
b = tf.Variable(tf.constant(0.1, shape=shape))
return b
def model():
'''
自定義卷積模型
一卷積層:32個filter,5*5,strides=1,padding="SAME"; 池化:2*2, strides=2,padding="SAME"
二卷積層:64個filter,5*5,strides=1,padding="SAME";池化:2*2, strides=2
:return: None
'''
# 1. 準備資料佔位符 x[None, 784] y_true[None, 10]
with tf.variable_scope("data"):
x = tf.placeholder(tf.float32, [None, 784])
y_true = tf.placeholder(tf.int32, [None, 10])
# 2. 一卷積層, 卷積、啟用、池化
with tf.variable_scope("conv1"):
# 隨機初始化權重, 偏置
w_conv1 = weight_variables([5,5,1,32])
b_conv1 = bias_variables([32])
# 對x改變形狀[None,784] --> [None, 28, 28, 1]
x_reshape = tf.reshape(x, [-1, 28,28,1])
# 卷積+啟用 [None, 28, 28, 1] --> [None, 28, 28, 32]
x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape, w_conv1, strides=[1,1,1,1], padding="SAME") + b_conv1)
# 池化 2*2 [None, 28, 28, 32] --> [None, 14, 14, 32]
x_pool1 = tf.nn.max_pool(x_relu1, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
# 3. 二卷積層
with tf.variable_scope("conv2"):
# 隨機初始化權重, 偏置
w_conv2 = weight_variables([5, 5, 32, 64])
b_conv2 = bias_variables([64])
# 卷積+啟用 [None, 14, 14, 32] --> [None, 14, 14, 64]
x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2)
# 池化 2*2 [None, 14, 14, 64] --> [None, 7, 7, 64]
x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
# 4. 全連線層 [None,7,7,64] --> [None,7*7*64] * [7*7*64,10] + [10] = [None,10]
with tf.variable_scope("fc"):
# 隨機初始化權重, 偏置
w_fc = weight_variables([7*7*64, 10])
b_fc = bias_variables([10])
# 修改x_pool2形狀
x_fc_reshape = tf.reshape(x_pool2, [-1, 7*7*64])
# 矩陣運算得出每個樣本得10個結果
y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc
return x, y_true, y_predict
def conv_fc():
# 1. 獲取真實資料
mnist = input_data.read_data_sets("./data/mnist/", one_hot=True)
# 2. 定義模型,獲得輸出
x, y_true, y_predict = model()
# 3. 求出所有樣本的損失,然後求平均值
with tf.variable_scope("soft_cross"):
# 求平均交叉熵損失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))
# 4. 梯度下降求出損失
with tf.variable_scope("optimazer"):
train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
# 5. 計算準確率
with tf.variable_scope("acc"):
equal_list = tf.equal(tf.arg_max(y_true, 1), tf.arg_max(y_predict, 1))
accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
# 定義一個初始化變數的op
init_op = tf.global_variables_initializer()
# 開啟會話
with tf.Session() as sess:
sess.run(init_op)
# 迴圈訓練
for i in range(3000):
# 取出真實資料中得特徵值和目標值
mnist_x, mnist_y = mnist.train.next_batch(50)
sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})
print("訓練第 %d 步,準確率為:%f " % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))
if __name__ == '__main__':
conv_fc()
- 一到筆試題
計算過程(通道對輸出不影響):
- 經過一層卷積:長,H2 = (200 - 5 + 2*1)/2 +1 = 99.5 (這裡不是整數是需要自己分析卷積過程,步長為2,0.5步就是1,因為padding=1,padding是填充的0無需觀察,因此結果就是99);長寬一樣,因此不在計算寬。
- 經過pooling,H2 = (99 - 3 + 2*0)/1 +1 = 97
- 又經過一層卷積:H2 = (97 - 3 + 2*1)/1 +1 = 97,因此最終圖片大小輸出為97*97
因此答案是:C. 97