python,tensorflow,CNN實現mnist資料集的訓練與驗證正確率
阿新 • • 發佈:2019-01-12
1.工程目錄
2.匯入data和input_data.py
連結:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA
提取碼:4nnl
3.CNN.py
import tensorflow as tf import matplotlib.pyplot as plt import input_data mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print('MNIST ready') n_input = 784 n_output = 10 weights = { 'wc1': tf.Variable(tf.truncated_normal([3, 3, 1, 64], stddev=0.1)), 'wc2': tf.Variable(tf.truncated_normal([3, 3, 64, 128], stddev=0.1)), 'wd1': tf.Variable(tf.truncated_normal([7*7*128, 1024], stddev=0.1)), 'wd2': tf.Variable(tf.truncated_normal([1024, n_outpot], stddev=0.1)), } biases = { 'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)), 'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)), 'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)), 'bd2': tf.Variable(tf.random_normal([n_outpot], stddev=0.1)), } def conv_basic(_input, _w, _b, _keepratio): _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME') _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1'])) _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') _pool_dr1 = tf.nn.dropout(_pool1, _keepratio) _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME') _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2'])) _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') _pool_dr2 = tf.nn.dropout(_pool2, _keepratio) _densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]]) _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1']), _b['bd1'])) _fc_dr1 = tf.nn.dropout(_fc1, _keepratio) _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2']) out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool_dr1': _pool_dr1, 'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'densel': _densel, 'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out } return out print('CNN READY') x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_output]) keepratio = tf.placeholder(tf.float32) _pred = conv_basic(x, weights, biases, keepratio)['out'] cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) optm = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost) _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) init = tf.global_variables_initializer() print('GRAPH READY') sess = tf.Session() sess.run(init) training_epochs = 15 batch_size = 16 display_step = 1 for epoch in range(training_epochs): avg_cost = 0. total_batch = 10 for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio: 0.7}) avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio: 1.0})/total_batch if epoch % display_step == 0: print('Epoch: %03d/%03d cost: %.9f' % (epoch, training_epochs, avg_cost)) train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio: 1.}) print('Training accuracy: %.3f' % (train_acc)) res_dict = {'weight': sess.run(weights), 'biases': sess.run(biases)} import pickle with open('res_dict.pkl', 'wb') as f: pickle.dump(res_dict, f, pickle.HIGHEST_PROTOCOL)
4.test.py
import pickle import numpy as np def load_file(path, name): with open(path+''+name+'.pkl', 'rb') as f: return pickle.load(f) res_dict = load_file('', 'res_dict') print(res_dict['weight']['wc1']) index = 0 import input_data mnist = input_data.read_data_sets('data/', one_hot=True) test_image = mnist.test.images test_label = mnist.test.labels import tensorflow as tf def conv_basic(_input, _w, _b, _keepratio): _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME') _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1'])) _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') _pool_dr1 = tf.nn.dropout(_pool1, _keepratio) _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME') _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2'])) _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') _pool_dr2 = tf.nn.dropout(_pool2, _keepratio) _densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].shape[0]]) _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1']), _b['bd1'])) _fc_dr1 = tf.nn.dropout(_fc1, _keepratio) _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2']) out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool_dr1': _pool_dr1, 'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'densel': _densel, 'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out } return out n_input = 784 n_output = 10 x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_output]) keepratio = tf.placeholder(tf.float32) _pred = conv_basic(x, res_dict['weight'], res_dict['biases'], keepratio)['out'] cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) training_epochs = 1 batch_size = 1 display_step = 1 for epoch in range(training_epochs): avg_cost = 0. total_batch = 10 for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) if epoch % display_step == 0: print('_pre:', np.argmax(sess.run(_pred, feed_dict={x: batch_xs, keepratio: 1. }))) print('answer:', np.argmax(batch_ys))