EL之GB(GBC):利用GB對二分類問題進行建模並評估
阿新 • • 發佈:2019-01-14
EL之GB(GBC):利用GB對二分類問題進行建模並評估
輸出結果
T1、純GB演算法
T2、以RF為基學習器的GB演算法
設計思路
核心程式碼
# nEst = 2000 # depth = 3 # learnRate = 0.007 # maxFeatures = None nEst = 2000 depth = 3 learnRate = 0.007 maxFeatures = 20 rockVMinesGBMModel = ensemble.GradientBoostingClassifier(n_estimators=nEst, max_depth=depth, learning_rate=learnRate, max_features=maxFeatures) rockVMinesGBMModel.fit(xTrain, yTrain) auc = [] aucBest = 0.0 predictions = rockVMinesGBMModel.staged_decision_function(xTest) for p in predictions: aucCalc = roc_auc_score(yTest, p) auc.append(aucCalc) if aucCalc > aucBest: aucBest = aucCalc pBest = p