tensorflow+mnist資料集(程式碼)
阿新 • • 發佈:2019-01-14
終於自己完整實現了一個例子了。這個例子比較簡單,但是用到了好多之前沒接觸的知識,感覺有必要記下來,方便自己以後學習,也能跟大家學習交流。用的是mnist資料集
(其中自己的資料夾路徑得換成 '/' 這樣的斜槓才行)
# coding: utf-8 # In[48]: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # In[49]: #MNIST資料集相關的常數。 INPUT_NODE = 784 OUTPUT_NODE = 10 # In[50]: #配置神經網路的引數; LAYER1_NODE = 500 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 TRAINING_STEPS = 5000 MOVING_AVERAGE_DECAY = 0.99 # In[51]: #定義一個輔助函式,給定神經網路的輸入和所有引數,計算前向傳播結果;Relu啟用函式; def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2): #當沒有提供滑動平均類時,直接使用引數當前的取值; if avg_class == None: layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1) return tf.matmul(layer1, weights2) + biases2 else: layer1 = tf.nn.relu( tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1)) return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) # In[52]: def train(mnist): x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input') #第一層的輸入; y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') # 最後一層的輸入; #生成隱藏層的引數; weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)) biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) #生成輸出層的引數; weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)) biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) #呼叫之前編寫的函式inference; y = inference(x, None, weights1, biases1, weights2, biases2) global_step = tf.Variable(0, trainable=False) variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) #使用交叉熵作為損失函式; cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) #計算L2正則化損失函式; regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) regularization = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularization #總損失; #設定指數衰減的學習率; learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) #使用梯度下降來優化演算法; train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') # 計算正確率 correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化會話,並開始訓練過程。 with tf.Session() as sess: tf.global_variables_initializer().run() validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 迴圈的訓練神經網路。 for i in range(TRAINING_STEPS): if i % 1000 == 0: validate_acc = sess.run(accuracy, feed_dict=validate_feed) print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc)) xs,ys=mnist.train.next_batch(BATCH_SIZE) sess.run(train_op,feed_dict={x:xs,y_:ys}) test_acc=sess.run(accuracy,feed_dict=test_feed) print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) # In[53]: def main(argv=None): mnist = input_data.read_data_sets("Z:/jupyter_notebooks/tensorflow-tutorial-master/Deep_Learning_with_TensorFlow/datasets/MNIST_data", one_hot=True) train(mnist) if __name__=='__main__': main() # In[ ]: