1. 程式人生 > >CVonline: Image Databases 計算機視覺影象資料集

CVonline: Image Databases 計算機視覺影象資料集

Index by Topic

Another helpful site is the YACVID page.

Action Databases

Biological/Medical

  1. 2008 MICCAI MS Lesion Segmentation Challenge (National Institutes of Health Blueprint for Neuroscience Research)
  2. Annotated Spine CT Database for Benchmarking of Vertebrae Localization, 125 patients, 242 scans (Ben Glockern)
  3. Cavy Action Dataset - 16 sequences with 640 x 480 resolutions recorded at 7.5 frames per second (fps) with approximately 31621506 frames in total (272 GB) of interacting cavies (guinea pig) (Al-Raziqi and Denzler)
  4. CRCHistoPhenotypes - Labeled Cell Nuclei Data - colorectal cancer histology images consisting of nearly 30,000 dotted nuclei with over 22,000 labeled with the cell type (Rajpoot + Sirinukunwattana)
  5. Leaf Segmentation ChallengeTobacco and arabidopsis plant images (Hanno Scharr, Massimo Minervini, Andreas Fischbach, Sotirios A. Tsaftaris)
  6. Moth fine-grained recognition - 675 similar classes, 5344 images (Erik Rodner et al)
  7. Mouse Embryo Tracking Database - cell division event detection (Marcelo Cicconet, Kris Gunsalus)
  8. OASIS - Open Access Series of Imaging Studies - 500+ MRI data sets of the brain (Washington University, Harvard University, Biomedical Informatics Research Network)
  9. Plant Phenotyping Datasets - plant data suitable for plant and leaf detection, segmentation, tracking, and species recognition (M. Minervini, A. Fischbach, H. Scharr, S. A. Tsaftaris)
  10. Spine and Cardiac data (Digital Imaging Group of London Ontario, Shuo Li)
  11. VascuSynth - 120 3D vascular tree like structures with ground truth (Mengliu Zhao, Ghassan Hamarneh)

Face Databases

Fingerprints

General Images

General RGBD and Depth Datasets

Note: there are 3D datasets elsewhere as well, e.g. in ObjectsScenes, and Actions.

  1. BigBIRD - 100 objects with for each object, 600 3D point clouds and 600 high-resolution color images spanning all views (Singh, Sha, Narayan, Achim, Abbeel)
  2. CAESAR Civilian American and European Surface Anthropometry Resource Project - 4000 3D human body scans (SAE International)
  3. CIN 2D+3D object classification dataset - segmented color and depth images of objects from 18 categories of common household and office objects (Björn Browatzki et al)
  4. IMPART multi-view/multi-modal 2D+3D film production dataset - LIDAR, video, 3D models, spherical camera, RGBD, stereo, action, facial expressions, etc. (Univ. of Surrey)
  5. NYU Depth Dataset V2 - Indoor Segmentation and Support Inference from RGBD Images
  6. Semantic-8: 3D point cloud classification with 8 classes (ETH Zurich)
  7. Washington RGB-D Object Dataset - 300 common household objects and 14 scenes. (University of Washington and Intel Labs Seattle)

Hand Grasp, Action and Gesture Databases

  1. A-STAR Annotated Hand-Depth Image Dataset and its Performance Evaluation - depth data and data glove data, 29 images of 30 volunteers, Chinese number counting and American Sign Language (Xu and Cheng)
  2. HandNet: annotated depth images of articulated hands 214971 annotated depth images of hands captured by a RealSense RGBD sensor of hand poses. Annotations: per pixel classes, 6D fingertip pose, heatmap. Images -> Train: 202198, Test: 10000, Validation: 2773. Recorded at GIP Lab, Technion.
  3. LISA Vehicle Detection Dataset - colour first person driving video under various lighting and traffic conditions (Sivaraman, Trivedi)
  4. LISA CVRR-HANDS 3D - 19 gestures performed by 8 subjects as car driver and passengers (Ohn-Bar and Trivedi)
  5. NYU Hand Pose Dataset - 8252 test-set and 72757 training-set frames of captured RGBD data with ground-truth hand-pose, 3 views (Tompson, Stein, Lecun, Perlin}
  6. Sheffield gesture database - 2160 RGBD hand gesture sequences, 6 subjects, 10 gestures, 3 postures, 3 backgrounds, 2 illuminations (Ling Shao)
  7. UT Grasp Data Set - 4 subjects grasping a variety of objectss with a variety of grasps (Cai, Kitani, Sato)
  8. Yale human grasping data set - 27 hours of video with tagged grasp, object, and task data from two housekeepers and two machinists (Bullock, Feix, Dollar)

Image, Video and Shape Database Retrieval

Object Databases

People, Pedestrian, Eye/Iris, Template Detection/Tracking Databases

  1. 3D KINECT Gender Walking data base (L. Igual, A. Lapedriza, R. Borràs from UB, CVC and UOC, Spain)
  2. Caltech Pedestrian Dataset (P. Dollar, C. Wojek, B. Schiele and P. Perona)
  3. CASIA gait database (Chinese Academy of Sciences)
  4. CASIA-IrisV3 (Chinese Academy of Sciences, T. N. Tan, Z. Sun)
  5. CUHK Crowd Dataset - 474 video clips from 215 crowded scenes (Shao, Loy, and Wang)
  6. Crime Scene Footwear Impression Database - crime scene and reference foorware impression images (Adam Kortylewski)
  7. CUHK01 Dataset : Person re-id dataset with 3, 884 images of 972 pedestrians (Rui Zhao et al)
  8. CUHK02 Dataset : Person re-id dataset with five camera view settings. (Rui Zhao et al)
  9. CUHK03 Dataset : Person re-id dataset with 13,164 images of 1,360 pedestrians (Rui Zhao et al)
  10. Daimler Pedestrian Detection Benchmark 21790 images with 56492 pedestrians plus empty scenes (M. Enzweiler, D. M. Gavrila)
  11. GVVPerfcapEva - repository of human shape and performance capture data, including full body skeletal, hand tracking, body shape, face performance, interactions (Christian Theobalt)
  12. HAT database of 27 human attributes (Gaurav Sharma, Frederic Jurie)
  13. Izmir - omnidirectional and panoramic image dataset (with annotations) to be used for human and car detection (Yalin Bastanlar)
  14. MAHNOB: MHI-Mimicry database - A 2 person, multiple camera and microphone database for studying mimicry in human-human interaction scenarios. (Sun, Lichtenauer, Valstar, Nijholt, and Pantic)
  15. Market-1501 Dataset - 32,668 annotated bounding boxes of 1,501 identities from up to 6 cameras (Liang Zheng et al)
  16. MPI DYNA - A Model of Dynamic Human Shape in Motion (Max Planck Tubingen)
  17. Multimodal Activities of Daily Living - including video, audio, physiological, sleep, motion and plug sensors. (Alexia Briasouli)
  18. MIT CBCL Pedestrian Data (Center for Biological and Computational Learning)
  19. MPI FAUST DatasetA data set containing 300 real, high-resolution human scans, with automatically computed ground-truth correspondences (Max Planck Tubingen)
  20. MPI MOSH Motion and Shape Capture from Markers. MOCAP data, 3D shape meshes, 3D high resolution scans. (Max Planck Tubingen)
  21. Multiple Object Tracking Benchmark - A collection of datasets with ground truth, plus a performance league table (ETHZ, U. Adelaide, TU Darmstadt)
  22. PIROPO - People in Indoor ROoms with Perspective and Omnidirectional cameras, with more than 100,000 annotated frames (GTI-UPM, Spain)
  23. RAiD - Re-Identification Across Indoor-Outdoor Dataset: 43 people, 4 cameras, 6920 images (Abir Das et al)
  24. VIPeR: Viewpoint Invariant Pedestrian Recognition - 632 pedestrian image pairs taken from arbitrary viewpoints under varying illumination conditions. (Gray, Brennan, and Tao)

Remote Sensing

  1. ISPRS 2D semantic labeling - Height models and true ortho-images with a ground sampling distance of 5cm have been prepared over the city of Potsdam/Germany (Franz Rottensteiner, Gunho Sohn, Markus Gerke, Jan D. Wegner)
  2. ISPRS 3D semantic labeling - nine class airborne laser scanning data (Franz Rottensteiner, Gunho Sohn, Markus Gerke, Jan D. Wegner)
  1. Barcelona - 15,150 images, urban views of Barcelona (Tighe and Lazebnik)
  2. Indoor Scene Recognition - 67 Indoor categories, 15620 images (Quattoni and Torralba)
  3. LM+SUN - 45,676 images, mainly urban or human related scenes (Tighe and Lazebnik)
  4. Places Scene Recognition database - 205 scene categories and 2.5 millions of images (Zhou, Lapedriza, Xiao, Torralba, and Oliva)
  5. Stanford Background Dataset - 715 images of outdoor scenes containing at least one foreground object (Gould et al)
  6. SUN 2012 - 16,873 fully annotated scene images for scene categorization (Xiao et al)
  7. SUN 397 - 397 scene categories for scene classification (Xiao et al)
  8. SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite - 10,000 RGB-D images, 146,617 2D polygons and 58,657 3D bounding boxes (Song, Lichtenberg, and Xiao)

Segmentation (General)

Surveillance

Textures

General Videos

  1. Large scale YouTube video dataset - 156,823 videos (2,907,447 keyframes) crawled from YouTube videos (Yi Yang)

Other Collections

Miscellaneous

Date of last change to this page: 05/14/2016 05:10:32Valid XHTML 1.0 Strict

© 2011 Robert Fisher

from: http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm

相關推薦

CVonline: Image Databases 計算機視覺影象資料

Index by Topic Another helpful site is the YACVID page. Action Databases Biological/Medical 2008 MICCAI MS Lesion Segmentation Challe

計算機視覺著名資料CV Datasets

This dataset consists of a set of actions collected from various sports which are typically featured on broadcast television channels such as the BBC and E

計算機視覺相關資料和比賽

Imagenet資料集是目前深度學習影象領域應用得非常多的一個數據集,關於影象分類、定位、檢測等研究工作大多基於此資料集展開。Imagenet資料集有1400多萬幅圖片,涵蓋2萬多個類別;其中有超過百萬的圖片有明確的類別標註和影象中物體位置的標註。Image

計算機視覺標準資料整理—PASCAL VOC資料

資料集下載 PASCAL VOC為影象識別和分類提供了一整套標準化的優秀的資料集,從2005年到2012年每年都會舉行一場影象識別challenge。此資料集可以用於影象分類、目標檢測、影象分割。 資料集下載映象地址如下(包括VOC2007和VOC2012):

計算機視覺標準資料整理—CIFAR-100資料

CIFAR-100資料集(用作100類的影象分類) 這個資料集和CIFAR-10相比,它具有100個類,大約600張/類,每類500張訓練,500張測試; 這100類又可以grouped成20

計算機視覺標準資料整理—COCO資料

COCO資料集由微軟贊助,其對於影象的標註資訊不僅有類別、位置資訊,還有對影象的語義文字描述,COCO資料集的開源使得近兩三年來影象分割語義理解取得了巨大的進展,也幾乎成為了影象語義理解演算法效能評價的“標準”資料集。Google的開源show and tell生成模型就是在此資料集上測試的。  這個資料

資料 | 開源資料計算機視覺影象、定位、識別)

博主github:https://github.com/MichaelBeechan    博主CSDN:https://blog.csdn.net/u011344545    計算機視覺資料集:https://github.com/Michael

計算機視覺-實驗常用影象資料

1.搜狗實驗室資料集: 網際網路圖片庫來自sogou圖片搜尋所索引的部分資料。其中收集了包括人物、動物、建築、機械、風景、運動等類別,總數高達2,836,535張圖片。對於每張圖片,資料集中給出了圖片的原圖、縮圖、所在網頁以及所在網頁中的相關文字。200多G 2

[計算機視覺] 影象拼接 Image Stitching

作業要求:         1、將多張圖片合併拼接成一張全景圖(看下面效果圖)         2、儘量用C/C++(老師說用matlab會給很低的分_(:зゝ∠)_,所以下面的程式碼全部都用C++來寫) 效果圖: 實現大致步驟: 2、利

機器視覺 OpenCV—python 影象資料獲取工具(視訊取幀)

一、前言 之前在做影象分類的時候,人臉識別(開原始碼)的練手,資料集獲取麻煩(沒人願意將自己照片給人家做資料集),於是就用自己造資料集,但是拍照拍幾百張訓練效果不好,也嫌麻煩,乾脆就是視訊取幀的方式,在這之前使用專門的軟體。不過opencv自帶了視訊處理的API

騰訊AI Lab開源業內最大規模多標籤影象資料(附下載地址)

參加 2018 AI開發者大會,請點選 ↑↑↑ 今日(10 月 18 日),騰訊AI Lab宣佈正式開源“Tencent ML-Images”專案。該專案由多標籤影象資料集 ML-Images,以及業內目前同類深度學習模型中精度最高的深度殘差網路 ResNet-101 構成。

建立自己的影象資料

適用範圍 1、python機器學習庫scikit learn 2、有監督/無監督 程式碼組成 1、裁剪圖片建立初始影象資料集 2、將影象資料集轉換為可以訓練的模式 我們在運用機器學習演算法對影象進行分類、識別時,是將二維矩陣拉成一維向量。skl

計算機視覺/影象/模式識別方向期刊會議

最近在整理計算機視覺的會議和期刊,查資料的過程中發現了兩個總結的不錯的部落格,在這裡轉載過來,後面自己也會整理一份發上來 轉自:https://blog.csdn.net/lqhbupt/article/details/23698225 和 第一章:會議 conferences 一般來說,學

《Gluon 動手學深度學習》顯示影象資料Fashion-MNIST

%matplotlib inline import sys sys.path.append('..') import gluonbook as gb from mxnet.gluon import data as gdata import time mnist_train=gdata.vision

計算機視覺技術資料留存

2018年11月 《機器學習100天》 深度學習影象識別的未來:機遇與挑戰並存 英偉達的“千人摩擦計劃” 預訓練模型遷移學習 2018年10月 為中共中央政治局講授新一代人工智慧課程 高文院士:從大資料時代來到人工智慧時代,我們走了多遠了? 高文院士:國家新一

【數字影象處理系列四】影象資料增強方式總結和實現

本系列python版本:python2.7.15 本系列opencv-python版本:opencv-python3.4.2.17 本系列使用的開發環境是jupyter notebook,是一個python的互動式開發環境,測試十分方便,並集成了vim操作,

如何快速構建深度學習影象資料

1、介紹 為了構建我們的深度學習影象資料集,我們將利用微軟的Bing影象搜尋API,這是微軟認知服務的一部分,用於將AI應用在視覺,語音,文字等的軟體。 2、建立您的Cognitive Services帳戶 點選下面的網頁進入: https://azure

【備忘】從基礎到深度學習OpenCV視訊教程計算機視覺影象識別實戰Python C C++

├─第01講 工欲善其事必先利其器-影象處理基礎 │      cv第一次資料.rar │      第一課.mkv │      ├─第02講 初探計算機視覺 │      cv_第一二講.pdf │      cv第二次資料.rar │      第二課.mkv │  

CS231n 卷積神經網路與計算機視覺 6 資料預處理 權重初始化 規則化 損失函式 等常用方法總結

1 資料處理 首先註明我們要處理的資料是矩陣X,其shape為[N x D] (N =number of data, D =dimensionality). 1.1 Mean subtraction 去均值 去均值是一種常用的資料處理方式.它是將各個特徵值減去其均

霧天影象資料整理

D-hazy資料集 介紹瞭如何用深度圖生成霧天 使用了以下室內資料集 middlebury http://vision.middlebury.edu/stereo/data/scenes2014/ 2.NYU2 Depth https://cs.nyu.edu/~s