CVonline: Image Databases 計算機視覺影象資料集
Index by Topic
Another helpful site is the YACVID page.
Action Databases
Biological/Medical
- 2008 MICCAI MS Lesion Segmentation Challenge (National Institutes of Health Blueprint for Neuroscience Research)
- Annotated Spine CT Database for Benchmarking of Vertebrae Localization, 125 patients, 242 scans (Ben Glockern)
- Cavy Action Dataset - 16 sequences with 640 x 480 resolutions recorded at 7.5 frames per second (fps) with approximately 31621506 frames in total (272 GB) of interacting cavies (guinea pig) (Al-Raziqi and Denzler)
- CRCHistoPhenotypes - Labeled Cell Nuclei Data - colorectal cancer histology images consisting of nearly 30,000 dotted nuclei with over 22,000 labeled with the cell type (Rajpoot + Sirinukunwattana)
- Leaf Segmentation ChallengeTobacco and arabidopsis plant images (Hanno Scharr, Massimo Minervini, Andreas Fischbach, Sotirios A. Tsaftaris)
- Moth fine-grained recognition - 675 similar classes, 5344 images (Erik Rodner et al)
- Mouse Embryo Tracking Database - cell division event detection (Marcelo Cicconet, Kris Gunsalus)
- OASIS - Open Access Series of Imaging Studies - 500+ MRI data sets of the brain (Washington University, Harvard University, Biomedical Informatics Research Network)
- Plant Phenotyping Datasets - plant data suitable for plant and leaf detection, segmentation, tracking, and species recognition (M. Minervini, A. Fischbach, H. Scharr, S. A. Tsaftaris)
- Spine and Cardiac data (Digital Imaging Group of London Ontario, Shuo Li)
- VascuSynth - 120 3D vascular tree like structures with ground truth (Mengliu Zhao, Ghassan Hamarneh)
Face Databases
Fingerprints
General Images
General RGBD and Depth Datasets
Note: there are 3D datasets elsewhere as well, e.g. in Objects, Scenes, and Actions.
- BigBIRD - 100 objects with for each object, 600 3D point clouds and 600 high-resolution color images spanning all views (Singh, Sha, Narayan, Achim, Abbeel)
- CAESAR Civilian American and European Surface Anthropometry Resource Project - 4000 3D human body scans (SAE International)
- CIN 2D+3D object classification dataset - segmented color and depth images of objects from 18 categories of common household and office objects (Björn Browatzki et al)
- IMPART multi-view/multi-modal 2D+3D film production dataset - LIDAR, video, 3D models, spherical camera, RGBD, stereo, action, facial expressions, etc. (Univ. of Surrey)
- NYU Depth Dataset V2 - Indoor Segmentation and Support Inference from RGBD Images
- Semantic-8: 3D point cloud classification with 8 classes (ETH Zurich)
- Washington RGB-D Object Dataset - 300 common household objects and 14 scenes. (University of Washington and Intel Labs Seattle)
Hand Grasp, Action and Gesture Databases
- A-STAR Annotated Hand-Depth Image Dataset and its Performance Evaluation - depth data and data glove data, 29 images of 30 volunteers, Chinese number counting and American Sign Language (Xu and Cheng)
- HandNet: annotated depth images of articulated hands 214971 annotated depth images of hands captured by a RealSense RGBD sensor of hand poses. Annotations: per pixel classes, 6D fingertip pose, heatmap. Images -> Train: 202198, Test: 10000, Validation: 2773. Recorded at GIP Lab, Technion.
- LISA Vehicle Detection Dataset - colour first person driving video under various lighting and traffic conditions (Sivaraman, Trivedi)
- LISA CVRR-HANDS 3D - 19 gestures performed by 8 subjects as car driver and passengers (Ohn-Bar and Trivedi)
- NYU Hand Pose Dataset - 8252 test-set and 72757 training-set frames of captured RGBD data with ground-truth hand-pose, 3 views (Tompson, Stein, Lecun, Perlin}
- Sheffield gesture database - 2160 RGBD hand gesture sequences, 6 subjects, 10 gestures, 3 postures, 3 backgrounds, 2 illuminations (Ling Shao)
- UT Grasp Data Set - 4 subjects grasping a variety of objectss with a variety of grasps (Cai, Kitani, Sato)
- Yale human grasping data set - 27 hours of video with tagged grasp, object, and task data from two housekeepers and two machinists (Bullock, Feix, Dollar)
Image, Video and Shape Database Retrieval
Object Databases
People, Pedestrian, Eye/Iris, Template Detection/Tracking Databases
- 3D KINECT Gender Walking data base (L. Igual, A. Lapedriza, R. Borràs from UB, CVC and UOC, Spain)
- Caltech Pedestrian Dataset (P. Dollar, C. Wojek, B. Schiele and P. Perona)
- CASIA gait database (Chinese Academy of Sciences)
- CASIA-IrisV3 (Chinese Academy of Sciences, T. N. Tan, Z. Sun)
- CUHK Crowd Dataset - 474 video clips from 215 crowded scenes (Shao, Loy, and Wang)
- Crime Scene Footwear Impression Database - crime scene and reference foorware impression images (Adam Kortylewski)
- CUHK01 Dataset : Person re-id dataset with 3, 884 images of 972 pedestrians (Rui Zhao et al)
- CUHK02 Dataset : Person re-id dataset with five camera view settings. (Rui Zhao et al)
- CUHK03 Dataset : Person re-id dataset with 13,164 images of 1,360 pedestrians (Rui Zhao et al)
- Daimler Pedestrian Detection Benchmark 21790 images with 56492 pedestrians plus empty scenes (M. Enzweiler, D. M. Gavrila)
- GVVPerfcapEva - repository of human shape and performance capture data, including full body skeletal, hand tracking, body shape, face performance, interactions (Christian Theobalt)
- HAT database of 27 human attributes (Gaurav Sharma, Frederic Jurie)
- Izmir - omnidirectional and panoramic image dataset (with annotations) to be used for human and car detection (Yalin Bastanlar)
- MAHNOB: MHI-Mimicry database - A 2 person, multiple camera and microphone database for studying mimicry in human-human interaction scenarios. (Sun, Lichtenauer, Valstar, Nijholt, and Pantic)
- Market-1501 Dataset - 32,668 annotated bounding boxes of 1,501 identities from up to 6 cameras (Liang Zheng et al)
- MPI DYNA - A Model of Dynamic Human Shape in Motion (Max Planck Tubingen)
- Multimodal Activities of Daily Living - including video, audio, physiological, sleep, motion and plug sensors. (Alexia Briasouli)
- MIT CBCL Pedestrian Data (Center for Biological and Computational Learning)
- MPI FAUST DatasetA data set containing 300 real, high-resolution human scans, with automatically computed ground-truth correspondences (Max Planck Tubingen)
- MPI MOSH Motion and Shape Capture from Markers. MOCAP data, 3D shape meshes, 3D high resolution scans. (Max Planck Tubingen)
- Multiple Object Tracking Benchmark - A collection of datasets with ground truth, plus a performance league table (ETHZ, U. Adelaide, TU Darmstadt)
- PIROPO - People in Indoor ROoms with Perspective and Omnidirectional cameras, with more than 100,000 annotated frames (GTI-UPM, Spain)
- RAiD - Re-Identification Across Indoor-Outdoor Dataset: 43 people, 4 cameras, 6920 images (Abir Das et al)
- VIPeR: Viewpoint Invariant Pedestrian Recognition - 632 pedestrian image pairs taken from arbitrary viewpoints under varying illumination conditions. (Gray, Brennan, and Tao)
Remote Sensing
- ISPRS 2D semantic labeling - Height models and true ortho-images with a ground sampling distance of 5cm have been prepared over the city of Potsdam/Germany (Franz Rottensteiner, Gunho Sohn, Markus Gerke, Jan D. Wegner)
- ISPRS 3D semantic labeling - nine class airborne laser scanning data (Franz Rottensteiner, Gunho Sohn, Markus Gerke, Jan D. Wegner)
- Barcelona - 15,150 images, urban views of Barcelona (Tighe and Lazebnik)
- Indoor Scene Recognition - 67 Indoor categories, 15620 images (Quattoni and Torralba)
- LM+SUN - 45,676 images, mainly urban or human related scenes (Tighe and Lazebnik)
- Places Scene Recognition database - 205 scene categories and 2.5 millions of images (Zhou, Lapedriza, Xiao, Torralba, and Oliva)
- Stanford Background Dataset - 715 images of outdoor scenes containing at least one foreground object (Gould et al)
- SUN 2012 - 16,873 fully annotated scene images for scene categorization (Xiao et al)
- SUN 397 - 397 scene categories for scene classification (Xiao et al)
- SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite - 10,000 RGB-D images, 146,617 2D polygons and 58,657 3D bounding boxes (Song, Lichtenberg, and Xiao)
Segmentation (General)
Surveillance
Textures
General Videos
- Large scale YouTube video dataset - 156,823 videos (2,907,447 keyframes) crawled from YouTube videos (Yi Yang)
Other Collections
Miscellaneous
Date of last change to this page: 05/14/2016 05:10:32
© 2011 Robert Fisher
from: http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
相關推薦
CVonline: Image Databases 計算機視覺影象資料集
Index by Topic Another helpful site is the YACVID page. Action Databases Biological/Medical 2008 MICCAI MS Lesion Segmentation Challe
計算機視覺著名資料集CV Datasets
This dataset consists of a set of actions collected from various sports which are typically featured on broadcast television channels such as the BBC and E
計算機視覺相關資料集和比賽
Imagenet資料集是目前深度學習影象領域應用得非常多的一個數據集,關於影象分類、定位、檢測等研究工作大多基於此資料集展開。Imagenet資料集有1400多萬幅圖片,涵蓋2萬多個類別;其中有超過百萬的圖片有明確的類別標註和影象中物體位置的標註。Image
計算機視覺標準資料集整理—PASCAL VOC資料集
資料集下載 PASCAL VOC為影象識別和分類提供了一整套標準化的優秀的資料集,從2005年到2012年每年都會舉行一場影象識別challenge。此資料集可以用於影象分類、目標檢測、影象分割。 資料集下載映象地址如下(包括VOC2007和VOC2012):
計算機視覺標準資料集整理—CIFAR-100資料集
CIFAR-100資料集(用作100類的影象分類) 這個資料集和CIFAR-10相比,它具有100個類,大約600張/類,每類500張訓練,500張測試; 這100類又可以grouped成20
計算機視覺標準資料集整理—COCO資料集
COCO資料集由微軟贊助,其對於影象的標註資訊不僅有類別、位置資訊,還有對影象的語義文字描述,COCO資料集的開源使得近兩三年來影象分割語義理解取得了巨大的進展,也幾乎成為了影象語義理解演算法效能評價的“標準”資料集。Google的開源show and tell生成模型就是在此資料集上測試的。 這個資料
資料集 | 開源資料集(計算機視覺影象、定位、識別)
博主github:https://github.com/MichaelBeechan 博主CSDN:https://blog.csdn.net/u011344545 計算機視覺資料集:https://github.com/Michael
計算機視覺-實驗常用影象資料集
1.搜狗實驗室資料集: 網際網路圖片庫來自sogou圖片搜尋所索引的部分資料。其中收集了包括人物、動物、建築、機械、風景、運動等類別,總數高達2,836,535張圖片。對於每張圖片,資料集中給出了圖片的原圖、縮圖、所在網頁以及所在網頁中的相關文字。200多G 2
[計算機視覺] 影象拼接 Image Stitching
作業要求: 1、將多張圖片合併拼接成一張全景圖(看下面效果圖) 2、儘量用C/C++(老師說用matlab會給很低的分_(:зゝ∠)_,所以下面的程式碼全部都用C++來寫) 效果圖: 實現大致步驟: 2、利
機器視覺 OpenCV—python 影象資料集獲取工具(視訊取幀)
一、前言 之前在做影象分類的時候,人臉識別(開原始碼)的練手,資料集獲取麻煩(沒人願意將自己照片給人家做資料集),於是就用自己造資料集,但是拍照拍幾百張訓練效果不好,也嫌麻煩,乾脆就是視訊取幀的方式,在這之前使用專門的軟體。不過opencv自帶了視訊處理的API
騰訊AI Lab開源業內最大規模多標籤影象資料集(附下載地址)
參加 2018 AI開發者大會,請點選 ↑↑↑ 今日(10 月 18 日),騰訊AI Lab宣佈正式開源“Tencent ML-Images”專案。該專案由多標籤影象資料集 ML-Images,以及業內目前同類深度學習模型中精度最高的深度殘差網路 ResNet-101 構成。
建立自己的影象資料集
適用範圍 1、python機器學習庫scikit learn 2、有監督/無監督 程式碼組成 1、裁剪圖片建立初始影象資料集 2、將影象資料集轉換為可以訓練的模式 我們在運用機器學習演算法對影象進行分類、識別時,是將二維矩陣拉成一維向量。skl
計算機視覺/影象/模式識別方向期刊會議
最近在整理計算機視覺的會議和期刊,查資料的過程中發現了兩個總結的不錯的部落格,在這裡轉載過來,後面自己也會整理一份發上來 轉自:https://blog.csdn.net/lqhbupt/article/details/23698225 和 第一章:會議 conferences 一般來說,學
《Gluon 動手學深度學習》顯示影象資料集Fashion-MNIST
%matplotlib inline import sys sys.path.append('..') import gluonbook as gb from mxnet.gluon import data as gdata import time mnist_train=gdata.vision
計算機視覺技術資料留存
2018年11月 《機器學習100天》 深度學習影象識別的未來:機遇與挑戰並存 英偉達的“千人摩擦計劃” 預訓練模型遷移學習 2018年10月 為中共中央政治局講授新一代人工智慧課程 高文院士:從大資料時代來到人工智慧時代,我們走了多遠了? 高文院士:國家新一
【數字影象處理系列四】影象資料集增強方式總結和實現
本系列python版本:python2.7.15 本系列opencv-python版本:opencv-python3.4.2.17 本系列使用的開發環境是jupyter notebook,是一個python的互動式開發環境,測試十分方便,並集成了vim操作,
如何快速構建深度學習影象資料集
1、介紹 為了構建我們的深度學習影象資料集,我們將利用微軟的Bing影象搜尋API,這是微軟認知服務的一部分,用於將AI應用在視覺,語音,文字等的軟體。 2、建立您的Cognitive Services帳戶 點選下面的網頁進入: https://azure
【備忘】從基礎到深度學習OpenCV視訊教程計算機視覺影象識別實戰Python C C++
├─第01講 工欲善其事必先利其器-影象處理基礎 │ cv第一次資料.rar │ 第一課.mkv │ ├─第02講 初探計算機視覺 │ cv_第一二講.pdf │ cv第二次資料.rar │ 第二課.mkv │
CS231n 卷積神經網路與計算機視覺 6 資料預處理 權重初始化 規則化 損失函式 等常用方法總結
1 資料處理 首先註明我們要處理的資料是矩陣X,其shape為[N x D] (N =number of data, D =dimensionality). 1.1 Mean subtraction 去均值 去均值是一種常用的資料處理方式.它是將各個特徵值減去其均
霧天影象資料集整理
D-hazy資料集 介紹瞭如何用深度圖生成霧天 使用了以下室內資料集 middlebury http://vision.middlebury.edu/stereo/data/scenes2014/ 2.NYU2 Depth https://cs.nyu.edu/~s