1711(Number Sequence )(KMP)
Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 30288 Accepted Submission(s): 12768
Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input 2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output 6 -1
這是一道KMP演算法的模板題,KMP演算法在於NEXT陣列的理解,話不多說,記下模板吧。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int a[1000100]; int b[1000100]; int next_[1000010]; void get_next(int m) { int i=0,j=-1; next_[0]=-1; while(i<m) { if(j==-1||b[i]==b[j]) { next_[++i]=++j; } else { j=next_[j]; } } } int kmp(int n,int m) { int i=0,j=0; while(i<n) { if(j==-1||a[i]==b[j]) { i++; j++; if(j==m) return i-m+1; } else { j=next_[j]; } } return -1; } int main() { int t; scanf("%d",&t); while(t--) { int n,m; scanf("%d%d",&n,&m); { for(int i=0;i<n;i++) { scanf("%d",&a[i]); } for(int i=0;i<m;i++) { scanf("%d",&b[i]); } get_next(m); int ans=kmp(n,m); printf("%d\n",ans); } } }
相關推薦
1711(Number Sequence )(KMP)
Number Sequence Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 30288 Accep
51Nod - 1304 :字符串的相似度 (裸的擴展KMP)
字母 前綴 scan length clas str input printf while 我們定義2個字符串的相似度等於兩個串的相同前綴的長度。例如 "abc" 同 "abd" 的相似度為2,"aaa" 同 "aaab" 的相似度為3。 給出一個字符串S,計算S同他所有
【BZOJ1152】歌唱王國(生成函數,KMP)
導致 字符 com max 直接 std ++i problem 生成 【BZOJ1152】歌唱王國(生成函數,KMP) 題面 BZOJ 洛谷 題解 根據\(YMD\)論文來的QwQ。 首先大家都知道普通型生成函數是\(\displaystyle \sum_{i=0}^{\
字串學習總結(Hash & Manacher & KMP)
# 前言 終於開始學習新的東西了,總結一下字串的一些知識。 ## NO.1 字串雜湊(Hash) ### 定義 即將一個字串轉化成一個整數,並保證字串不同,得到的雜湊值不同,這樣就可以用來判斷一個該字串是否重複出現過。 所以說$Hash$就是用來求字串是否相同或者包含的。(包含關係就可以列舉區間,但是通常
HDU 1711 Number Sequence (KMP簡單題)
bmi AMM several rip case ive sts -- 沒有 Number Sequence Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe
HDU 1711 Number Sequence (kmp)
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task
hdu 1711 Number Sequence(KMP)
Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <
HDU oj 1711 Number Sequence(KMP入門)
KMP原理KMP演算法是一種改進的字串匹配演算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同時發現,因此人們稱它為克努特——莫里斯——普拉特操作(簡稱KMP演算法)。KMP演算法的關鍵是利用匹配失敗後的資訊,儘量減少模式串與主串的匹配次數以達到快速匹配的
HDU 1711 Number Sequence【KMP】【模板題】【水題】(返回匹配到的第一個字母的位置)
Number Sequence Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 29634 Acce
HDU 1711 Number Sequence (KMP找子串第一次出現的位置)(基礎模板題)
題意:給出若干個樣例,每個樣例包括兩個字串,如果第二個字串是第一個字串的子串,則求他第一次出現的位置,不是子串的話輸出-1. 思路:kmp演算法的模板題 對nexts陣列如何構造解釋: 根據定義ne
HDU 4390 Number Sequence (容斥原理+組合計數)
osi freopen ret dsm algo .cn iterator push_back man HDU 4390 題意: 大概就是這樣。不翻譯了:
1005:Number Sequence(hdu,數學規律題)
his arch ear iostream tput ostream htm 數據 long Problem Description A number sequence is defined as follows:f(1) = 1, f(2) = 1, f(n) = (
[JZOJ 5437] [NOIP2017提高A組集訓10.31] Sequence 解題報告 (KMP)
題目連結: http://172.16.0.132/senior/#main/show/5437 題目: 題解: 發現滿足上述性質並且僅當A序列的子序列的差分序列與B序列的差分序列相同 於是我們把A變成差分序列,把B變成差分序列,做一次KMP就好了 #include<algorit
HDU-1005-Number Sequence (迴圈週期)
原題連結: A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. Given A, B, and n, you are to
HDU 1005 Number Sequence(矩陣乘法+快速冪)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
HDU 1005 Number Sequence(基礎矩陣快速冪)
//HDU 1005 15MS 1424K #include <cstdio> #include <cstring> #include <cmath> #in
【HDOJ 1005】 Number Sequence (裸矩陣快速冪)
原諒我貼個水題。。。攢了一年的'恩怨'終於瞭解了 b( ̄▽ ̄)d 去年就接觸過矩陣快速冪 線代太弱 看他們程式碼沒參悟透。。可能真是悟性太差了。。 然後一隻以為矩陣快速冪是很叼的東西(不過確實很叼) 太高深 再沒敢碰。。有毒啊………… 直到最近比賽(VJ)出現矩陣快速冪
1005 Number Sequence(廣義斐波那契數列)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. G
1005 Number Sequence(長得像矩陣快速冪的找規律)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. Given A, B, and n, you are to ca
(python)百練1019:Number Sequence
題目: 描述 A single positive integer i is given. Write a program to find the digit located in the position i in the sequence of number grou