1. 程式人生 > >影象放大並進行BiCubic插值

影象放大並進行BiCubic插值

BiCubic插值原理:

構造BiCubic函式:

其中,a取-0.5.

BiCubic函式具有如下形狀:

[source: R. Keys, (1981). "Cubic convolution interpolation for digital image processing".IEEE Transactions on Signal Processing, Acoustics, Speech, and Signal Processing29(6): 1153–1160.]

對待插值的畫素點(x,y)(x和y可以為浮點數),取其附近的4x4鄰域點(xi,yj), i,j = 0,1,2,3。按如下公式進行插值計算:

實現程式碼:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <cmath>
#include <fstream>

using namespace cv;
using namespace std;

#define PI 3.14159265

float BiCubicPoly(float x);
void MyScaleBiCubicInter(Mat& src, Mat& dst, float TransMat[3][3]);
/**
 * @function main
 */
int main( int argc, char** argv )
{
  // load image
  char* imageName = "images/Lenna_256.png";

  Mat image;
  image = imread(imageName,1);
  if(!image.data)
  {
	  cout << "No image data" << endl;
	  return -1;
  }

  // show image
  namedWindow("image", CV_WINDOW_AUTOSIZE);
  imshow("image", image);
  
  
  Mat dst;
  float transMat[3][3] = { {2.0, 0, 0}, {0, 2.0, 0}, {0, 0, 1} };
  MyScaleBiCubicInter(image, dst, transMat);
  

  namedWindow("out_image", CV_WINDOW_AUTOSIZE);
  imshow("out_image", dst);

  imwrite("Lenna_scale_biCubic2.jpg", dst);

  waitKey(0);
	
	

  return 0;
}

float BiCubicPoly(float x)
{
	float abs_x = abs(x);
	float a = -0.5;
	if( abs_x <= 1.0 )
	{
		return (a+2)*pow(abs_x,3) - (a+3)*pow(abs_x,2) + 1;
	}
	else if( abs_x < 2.0 )
	{
		return a*pow(abs_x,3) - 5*a*pow(abs_x,2) + 8*a*abs_x - 4*a;
	}
	else
		return 0.0;

	
}



void MyScaleBiCubicInter(Mat& src, Mat& dst, float TransMat[3][3])
{
	CV_Assert(src.data);
	CV_Assert(src.depth() != sizeof(uchar));
	
	// calculate margin point of dst image
	float left =  0;
	float right =  0;
	float top =  0;
	float down =  0;

	float x = src.cols * 1.0f;
	float y = 0.0f;
	float u1 = x * TransMat[0][0] + y * TransMat[0][1];
	float v1 = x * TransMat[1][0] + y * TransMat[1][1];
	x = src.cols * 1.0f;
	y = src.rows * 1.0f;
	float u2 = x * TransMat[0][0] + y * TransMat[0][1];
	float v2 = x * TransMat[1][0] + y * TransMat[1][1];
	x = 0.0f;
	y = src.rows * 1.0f;
	float u3 = x * TransMat[0][0] + y * TransMat[0][1];
	float v3 = x * TransMat[1][0] + y * TransMat[1][1];

	left =  min( min( min(0.0f,u1), u2 ), u3);
	right =  max( max( max(0.0f,u1), u2 ), u3);
	top =  min( min( min(0.0f,v1), v2 ), v3);
	down =  max( max( max(0.0f,v1), v2 ), v3);

	// create dst image
	dst.create(int(abs(right-left)), int(abs(down-top)), src.type());
	

	CV_Assert( dst.channels() == src.channels() );
	int channels = dst.channels();

	int i,j;
	uchar* p;
	uchar* q0;
	uchar* q1;
	uchar* q2;
	uchar* q3;
	for( i = 0; i < dst.rows; ++i)
	{
		p = dst.ptr<uchar>(i);
		for ( j = 0; j < dst.cols; ++j)
		{
			// 
			x = (j+left)/TransMat[0][0]  ; 
			y = (i+top)/TransMat[1][1] ;

			int x0 = int(x) - 1;
			int y0 = int(y) - 1;
			int x1 = int(x);
			int y1 = int(y);
			int x2 = int(x) + 1;
			int y2 = int(y) + 1;
			int x3 = int(x) + 2;
			int y3 = int(y) + 2;

			if( (x0 >= 0) && (x3 < src.cols) && (y0 >= 0) && (y3 < src.rows) ) 
			{
				q0 = src.ptr<uchar>(y0);
				q1 = src.ptr<uchar>(y1);
				q2 = src.ptr<uchar>(y2);
				q3 = src.ptr<uchar>(y3);
				
				float dist_x0 = BiCubicPoly(x-x0);
				float dist_x1 = BiCubicPoly(x-x1);
				float dist_x2 = BiCubicPoly(x-x2);
				float dist_x3 = BiCubicPoly(x-x3);
				float dist_y0 = BiCubicPoly(y-y0);
				float dist_y1 = BiCubicPoly(y-y1);
				float dist_y2 = BiCubicPoly(y-y2);
				float dist_y3 = BiCubicPoly(y-y3);

				float dist_x0y0 = dist_x0 * dist_y0;
				float dist_x0y1 = dist_x0 * dist_y1;
				float dist_x0y2 = dist_x0 * dist_y2;
				float dist_x0y3 = dist_x0 * dist_y3;
				float dist_x1y0 = dist_x1 * dist_y0;
				float dist_x1y1 = dist_x1 * dist_y1;
				float dist_x1y2 = dist_x1 * dist_y2;
				float dist_x1y3 = dist_x1 * dist_y3;
				float dist_x2y0 = dist_x2 * dist_y0;
				float dist_x2y1 = dist_x2 * dist_y1;
				float dist_x2y2 = dist_x2 * dist_y2;
				float dist_x2y3 = dist_x2 * dist_y3;
				float dist_x3y0 = dist_x3 * dist_y0;
				float dist_x3y1 = dist_x3 * dist_y1;
				float dist_x3y2 = dist_x3 * dist_y2;
				float dist_x3y3 = dist_x3 * dist_y3;
				

				switch(channels)
				{
					case 1:
						{
							break;
						}
					case 3:
						{
							p[3*j] =    (uchar)(q0[3*x0] * dist_x0y0 +
												q1[3*x0] * dist_x0y1 +
												q2[3*x0] * dist_x0y2 +
												q3[3*x0] * dist_x0y3 +
												q0[3*x1] * dist_x1y0 +
												q1[3*x1] * dist_x1y1 +
												q2[3*x1] * dist_x1y2 +
												q3[3*x1] * dist_x1y3 +
												q0[3*x2] * dist_x2y0 +
												q1[3*x2] * dist_x2y1 +
												q2[3*x2] * dist_x2y2 +
												q3[3*x2] * dist_x2y3 +
												q0[3*x3] * dist_x3y0 +
												q1[3*x3] * dist_x3y1 +
												q2[3*x3] * dist_x3y2 +
												q3[3*x3] * dist_x3y3 ) ;

							p[3*j+1] =  (uchar)(q0[3*x0+1] * dist_x0y0 +
												q1[3*x0+1] * dist_x0y1 +
												q2[3*x0+1] * dist_x0y2 +
												q3[3*x0+1] * dist_x0y3 +
												q0[3*x1+1] * dist_x1y0 +
												q1[3*x1+1] * dist_x1y1 +
												q2[3*x1+1] * dist_x1y2 +
												q3[3*x1+1] * dist_x1y3 +
												q0[3*x2+1] * dist_x2y0 +
												q1[3*x2+1] * dist_x2y1 +
												q2[3*x2+1] * dist_x2y2 +
												q3[3*x2+1] * dist_x2y3 +
												q0[3*x3+1] * dist_x3y0 +
												q1[3*x3+1] * dist_x3y1 +
												q2[3*x3+1] * dist_x3y2 +
												q3[3*x3+1] * dist_x3y3 ) ;

							p[3*j+2] =  (uchar)(q0[3*x0+2] * dist_x0y0 +
												q1[3*x0+2] * dist_x0y1 +
												q2[3*x0+2] * dist_x0y2 +
												q3[3*x0+2] * dist_x0y3 +
												q0[3*x1+2] * dist_x1y0 +
												q1[3*x1+2] * dist_x1y1 +
												q2[3*x1+2] * dist_x1y2 +
												q3[3*x1+2] * dist_x1y3 +
												q0[3*x2+2] * dist_x2y0 +
												q1[3*x2+2] * dist_x2y1 +
												q2[3*x2+2] * dist_x2y2 +
												q3[3*x2+2] * dist_x2y3 +
												q0[3*x3+2] * dist_x3y0 +
												q1[3*x3+2] * dist_x3y1 +
												q2[3*x3+2] * dist_x3y2 +
												q3[3*x3+2] * dist_x3y3 ) ;

							float thre = 198.0f;
							if( (abs(p[3*j]-q1[3*x1]) > thre) || (abs(p[3*j+1]-q1[3*x1+1]) > thre) ||
								(abs(p[3*j+2]-q1[3*x1+2]) > thre) )
							{
								p[3*j] = q1[3*x1];
								p[3*j+1] = q1[3*x1+1];
								p[3*j+2] = q1[3*x1+2];
							}
							

							break;
						}
				}
			}
		}
	}
}


相關推薦

影象放大進行BiCubic

BiCubic插值原理: 構造BiCubic函式: 其中,a取-0.5. BiCubic函式具有如下形狀: [source: R. Keys, (1981). "Cubic convolution interpolation for digital image pro

影象放大進行BiCubic Matlab/C++程式碼

BiCubic插值原理: 雙三次插值又稱立方卷積插值。三次卷積插值是一種更加複雜的插值方式。該演算法利用待取樣點周圍16個點的灰度值作三次插值,不僅考慮到4 個直接相鄰點的灰度影響,而且考慮到各鄰點間灰度值變化率的影響。三次運算可以得到更接近高解析度影象的放大效果,但也導致

影象縮放--最近鄰

參考https://blog.csdn.net/wmn7q/article/details/52743284 自己一直以為放大影象是會放大畫素點的大小的,然後就去查了一下,發現不是這樣的,而是畫素點數量變了,而多的或者少的就依靠插值來實現 百度問答 這裡的答案我

影象縮放——雙線性演算法

在數學上,雙線性插值是有兩個變數的插值函式的線性插值擴充套件,其核心思想是在兩個方向分別進行一次線性插值。如果選擇一個座標系統使得  的四個已知點座標分別為 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那麼插值公式就可以化簡為: 用矩陣運算來表示的話就

雙三次BiCubic

                     雙三次插值(BiCubic插值 ) 雙三次插值又稱立方卷積插值。三次卷積插值是一種更加複雜的插值方式。該演算法利用待取樣點周圍16個點的灰度值作三次插值,不僅考慮到4 個直接相鄰點的灰度影響,而且考慮到各鄰點間灰度值變化率的影響。三

數字影象處理中常用的方法

在做數字影象處理時,經常會碰到小數象素座標的取值問題,這時就需要依據鄰近象素的值來對該座標進行插值。比如:做地圖投影轉換,對目標影象的一個象素進行座標變換到源影象上對應的點時,變換出來的對應的座標是一個小數,再比如做影象的幾何校正,也會碰到同樣的問題。以下是對常用的三種數字影

OpenCV---如何對影象進行雙線性運算(7)

附程式碼如下: import cv2 as cv import numpy as np def resize(): src = cv.imread("D:/matplotlib/0.jpg") cv.imshow("input",src) h, w = src.shape

使用Matlab進行影象的讀寫、顯示和縮放(最近臨和雙線性內法)

上次我們開始進行數字影象處理這門課程的實驗,直到現在才抽空出來寫寫文章,記錄一下知識點。介紹一下,使用Matlab對數字影象的簡單處理。 1、 讀取與顯示輸入影象: %輸入影象和顯示影象 funct

雙線性演算法進行影象縮放及效能效果優化

一)轉自http://handspeaker.iteye.com/blog/1545126 最近在程式設計時用到了雙線性插值演算法,對影象進行縮放。網上有很多這方面的資料,介紹的也算明白。但是,這些文章只介紹了演算法,並沒有具體說怎麼實現以及怎麼實現最好,舉個例子,你可以按照網上文章的演算法自己寫一個雙線性

影象放大與縮小(2)——雙線性放大與均值縮小

概述 基於上一節“等距取樣法”實現圖片放大與縮小的缺點。要對其進行改進,對影象的縮小則可以用“區域性均值法”,對於影象的放大則可以用“雙線性插值法”。 效果如下:                           2048*1536縮小為10

C/C++ BMP(24位真彩色)影象處理(3)------影象放大縮小(雙線性

    影象的放大縮小其實是一回事,都是先建立一張空白目標影象(放大縮小後的影象),其大小就是想要放大縮小後所得到的影象大小。建立影象後我們並不知道這張影象裡面的各個畫素點RGB(或灰度)值是多少,這個時候就需要經過一個演算法去算目標影象的畫素點RGB(或灰度)值。基本上所

影象放大與縮小(3)——雙立方演算法

-----------------------------轉載自jia20003的部落格" ----------------------------------- 一:數學原理 如果已知一個函式f(x)以及它在x=0,x=1處的導數,那麼

使用貝塞爾曲線進行 一種非常簡單的平滑多邊形的方法

ear loop line coin algorithm tro itl art mov 原文 Interpolation with Bezier Curves A very simple method of smoothing polygons Init

影象演算法的基礎知識(雙線性,協方差矩陣,矩陣的特徵值、特徵向量)

0. 前言 MATLAB或者OpenCV裡有很多封裝好的函式,我們可以使用一行程式碼直接呼叫並得到處理結果。然而當問到具體是怎麼實現的時候,卻總是一臉懵逼,答不上來。前兩天參加一個演算法工程師的筆試題,其中就考到了這幾點,感到非常汗顏!趕緊補習! 1. 雙線性插值 在影象處

雙線性影象縮放問題

       初次開始寫部落格,想記錄下自己在公司實習所做過的事情以及學習到的東西,雖然還是有很多東西不瞭解也還沒做出來,但是也希望這是一種體驗。        我於2018.9.3入職進行實習,到現在也快過去兩個月了,我在公司

MATLAB進行處理提取畫素

今天又重新看了一下2013年國賽的B題,碎紙片的拼接復原。瞭解了一下MATLAB處理影象的過程,不得不說MATLAB功能太強大,處理圖片只要幾行程式碼就足夠了。這道題還用到了模擬退火演算法,也是用MATLAB編寫的,寫在下一篇部落格裡。 MATLAB程式: clc; clear; fil

select 時 對欄位判斷是否為null 進行操作

今天用到這個需求,我用的是db2資料庫  ,上來就用ISNULL(欄位,賦值) ,結果不行。。。。。 經過查閱資料才發現每個資料庫還不同的,,下面總結一下: 首先使用mysql: ifnull(欄位,賦值); db2: nullif(欄位,賦值); oracl:

最近鄰和雙線性的基本原理 以及OpenCV中resize函式的用法改變影象的大小

最近鄰插值和雙線性插值的基本原理 影象的縮放很好理解,就是影象的放大和縮小。傳統的繪畫工具中,有一種叫做“放大尺”的繪畫工具,畫家常用它來放大圖畫。當然,在計算機上,我們不再需要用放大尺去放大或縮小影象了,把這個工作交給程式來完成就可以了。下面就來講講計算機怎麼來放大縮小圖象;在本文中,

最臨近 雙線性 三次卷積影象放縮)

分享一下我老師大神的人工智慧教程!零基礎,通俗易懂!http://blog.csdn.net/jiangjunshow 也歡迎大家轉載本篇文章。分享知識,造福人民,實現我們中華民族偉大復興!        

影象處理常用方法總結

分享一下我老師大神的人工智慧教程!零基礎,通俗易懂!http://blog.csdn.net/jiangjunshow 也歡迎大家轉載本篇文章。分享知識,造福人民,實現我們中華民族偉大復興!