1. 程式人生 > >程式碼————Efficient Optimization Algorithms for Multi-User Beamforming with Superposition Coding

程式碼————Efficient Optimization Algorithms for Multi-User Beamforming with Superposition Coding

%randn('state',1);
h1=(randn(6,1)+1i*randn(6,1))/sqrt(2);
h2=(randn(6,1)+1i*randn(6,1))/sqrt(2);
Q=angle(h1'*h2);
r1=3;
r2=3
sigmal1=10
sigmal2=1
h11=h1*exp(1i*Q)



cvx_begin   sdp  
    variable W1(6,6) complex hermitian  
    variable W2(6,6) complex hermitian  
    minimize trace(W1+W2);
    subject to
        r1*(real(h1'*W2*h1)+sigmal1)-real(h1'*W1*h1)<=0
        r1*(real(h2'*W2*h2)+sigmal2)-real(h2'*W1*h2)<=0
        r2*sigmal2-real(h2'*W2*h2)<=0
        W1>=0
        W2>=0
 cvx_end
 b=cvx_optval
 
 cvx_begin  
    variable w1(6) complex  
    variable w2(6) complex  
    minimize (w1'*w1+w2'*w2);
    subject to
        {[h1'*w2,sigmal1]',1/sqrt(r1)*real(h11'*w1)} <In>  complex_lorentz(2)
        {[h2'*w2,sigmal2]',1/sqrt(r1)*real(h2'*w1)} <In>  complex_lorentz(2)
        1/sqrt(r2)*real(h2'*w2)>=sigmal2
 cvx_end
 a=cvx_optval
 
 [b,a]
 

相關推薦

程式碼————Efficient Optimization Algorithms for Multi-User Beamforming with Superposition Coding

%randn('state',1); h1=(randn(6,1)+1i*randn(6,1))/sqrt(2); h2=(randn(6,1)+1i*randn(6,1))/sqrt(2); Q=an

Multi-User Applications with Anvil | Anvil

« Anvil Tutorials Data Storage and Security When your application supports multiple different users, it’s im

5 tips for multi-GPU training with Keras

Deep Learning (the favourite buzzwo

閱讀Book: MultiObjective using Evolutionary Algorithms (2) -- Multi-Objective Optimization: 各種解釋多目標

1. 多目標相關的概念 In a single-objective optimization problem, the task is tp find one solution (Except in some specific multi-model (除了多峰函式) which optim

吳恩達深度學習專項課程2學習筆記/week2/Optimization Algorithms

sce 適應 耗時 bubuko 優化算法 src bat -a 過程 Optimization algorithms 優化算法以加速訓練。 Mini-batch gradient descend Batch gradient descend:每一小步梯度下降否需要計算所

A Benchmark Comparsion of Monocular Visual-Inertial Odometry Algorithms for Flying Robots論文筆記

模型 fas con patch 最小 耦合 而且 測試平臺 style 摘要:   本文主要比較單目VIO的算法在飛行機器人上運行的性能,測試使用統一數據集為EuRoC。其中評價指標為:姿態估計精度、每幀處理時間以及CPU和內存負載使用率,同時還有RMSE(運行軌跡與真實

CSE 390A, Spring 2014 Assignment 3: Multi-user Unix Environments

This assignment continues to practice using the bash shell and basics of combining commands using redirection and pipes.  Electronically turn i

Fear the REAPER A System for Automatic Multi-Document Summarization with Reinforcement Learning

Cody Rioux, Sadid A. Hasan, Yllias Chali ##Abstract Achieve the largest coverage of the docu ments content.目標的覆蓋整個文件的內容 Concentrate dis

Shell執行MySQL指令碼錯誤:Operation CREATE USER failed for 'user'@'%'

在Docker裡面安裝的MySQL5.7,在編寫Shell指令碼執行時遇如題之BUG。 解決問題: drop user 'user'@'%' ; flush privileges; create user 'user'@'%' identified by '123456'; 可執

Android Adb/Linux/udev/rules for specified user

### This is a HTC Android phone connected to Linux/X86 host [email protected]:~/Android$ lsusb ................ Bus 003 Device 010: ID 0bb4

An Unified Intelligence-Communication Model for Multi-Agent System——Part II

An Unified Intelligence-Communication Model for Multi-Agent System: Overview and Case Studies – Chapter One: A Brief Introduction of the UIC Mod

An Unified Intelligence-Communication Model for Multi-Agent System——Part I

An Unified Intelligence-Communication Model for Multi-Agent System: Overview and Case Studies – Abstract and Outline of the Paper git部落格同步釋出 h

Efficient Online Segmentation for Sparse 3D Laser Scans-- 線上的稀疏點雲分割

在基於鐳射的自動駕駛或者移動機器人的應用中,在移動場景中提取單個物件的能力是十分重要的。因為這樣的系統需要在動態的感知環境中感知到周圍發生變化或者移動的物件,在感知系統中,將影象或者點雲資料預處理成單個物體是進行進一步分析的第一個步驟。   在這篇文章中就提出了一種十分高效的分割方法。首先是將掃

An Unified Intelligence-Communication Model for Multi-Agent System——Part III

An Unified Intelligence-Communication Model for Multi-Agent System: Overview and Case Studies – Chapter Two: Modelling the Information Source an

Algorithms for Non-negative Matrix Factorization 非負矩陣分解

NIPS 2000 經典論文翻譯。 摘要 非負矩陣分解(NMF)是一種可以有效處理多變數資料的方法。本文介紹、分析了兩種不同的 NMF 演算法,這兩種演算法僅在更新規則(update rule)中使用的乘性因子(multiplicative factor)有所區別。其中一種可以對傳統的最小二乘誤

【 Notes 】ALGORITHMS FOR TDOA-based SOURCE LOCALIZATION

Measurement Model in my blog:Measurement Model and Principles for TDOA-based Location Nonlinear Method: NLS Similarly, with the use of Equat

auth.User.groups: (fields.E304) Reverse accessor for 'User.groups' clashes with reverse accessor for 'Us

django-1.11) F:\crm>python manage.py makemigrationsSystemCheckError: System check identified some issues: ERRORS:auth.User.groups: (fields.E304) Revers

深度學習:乳腺論文Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram

參考論文解析:https://blog.csdn.net/Coralccccc/article/details/73956702 論文翻譯:https://blog.csdn.net/u014264373/article/details/79581655 標題:Deep Multi-inst

最好用程式碼審查工具Understand for Mac破解版v5.0

understand mac 破解版是mac平臺上一款非常強大的程式碼審查工具,可以幫助程式設計師快速理解,衡量,維護和記錄他們的原始碼。understand mac 破解介面是用Qt開發的,支援多語言、多平臺,內建的目錄和檔案比較器。Understand Mac主要功能包括:語義變化分析,優化指標,組合

Gentle Introduction to the Adam Optimization Algorithm for Deep Learning

The choice of optimization algorithm for your deep learning model can mean the difference between good results in minutes, hours, and days. The Adam optim