STL deque原始碼剖析
阿新 • • 發佈:2019-01-22
deque(double-ended queue)是一種雙向開口的序列容器,可以在頭部和尾部進行push或pop操作,與vector不同,deque不是真正的連續線性空間,它是由分段連續空間動態組合而成。
map是一個二重指標,指向一個指標陣列,陣列中每個元素都為指標,指向各個相同大小的緩衝區,容器deque中的元素就放在這些緩衝區中,當map中的緩衝區滿載後,就會配置一個新的map指向更大的空間。
下面詳細分析SGI中的實現:
實現在stl_queue.h標頭檔案中。
迭代器
deque也實現了隨機訪問迭代器,由於deque實現的是分段連續的線性空間,所以其迭代器設計相比vector比較複雜。
通過四個成員變數:
_Tp* _M_cur; //指向當前元素位置
_Tp* _M_first; //指向當前緩衝區的第一個位置
_Tp* _M_last; //指向當前緩衝區的最後一個位置
_Map_pointer _M_node; //指向中控器
template <class _Tp, class _Ref, class _Ptr>
struct _Deque_iterator {
typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
typedef random_access_iterator_tag iterator_category; //隨機訪問迭代器型別
typedef _Tp value_type; //值型別
typedef _Ptr pointer; //指標型別
typedef _Ref reference; //指標型別
typedef size_t size_type; //大小型別
typedef ptrdiff_t difference_type; //指標差型別
typedef _Tp** _Map_pointer; //二重指標型別
typedef _Deque_iterator _Self; //deque迭代器型別
_Tp* _M_cur; //指向當前元素位置
_Tp* _M_first; //指向當前緩衝區的第一個位置
_Tp* _M_last; //指向當前緩衝區的最後一個位置
_Map_pointer _M_node; //指向中控器
//構造器
_Deque_iterator(_Tp* __x, _Map_pointer __y)
: _M_cur(__x), _M_first(*__y),
_M_last(*__y + _S_buffer_size()), _M_node(__y) {}
_Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
_Deque_iterator(const iterator& __x)
: _M_cur(__x._M_cur), _M_first(__x._M_first),
_M_last(__x._M_last), _M_node(__x._M_node) {}
reference operator*() const { return *_M_cur; } //過載*運算子
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return _M_cur; } //過載->運算子
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
difference_type operator-(const _Self& __x) const { //過載-運算子
return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) +
(_M_cur - _M_first) + (__x._M_last - __x._M_cur); //考慮跨越不同的緩衝區塊
}
_Self& operator++() { //過載++運算子
++_M_cur; //當前位置++
if (_M_cur == _M_last) { //如果到了快取區最後一個位置,注意快取區最後一個位置不放置元素,只作為標誌
_M_set_node(_M_node + 1); //跳入下一個緩衝區塊
_M_cur = _M_first; //當前位置指向新區塊第一個位置
}
return *this;
}
_Self operator++(int) {
_Self __tmp = *this;
++*this;
return __tmp;
}
_Self& operator--() { //過載--運算子
if (_M_cur == _M_first) { //當前位置為當前快取區塊第一個位置時
_M_set_node(_M_node - 1); //跳入上一個緩衝區塊
_M_cur = _M_last; //當前位置指向新區塊最後一個位置
}
--_M_cur; //都要--,因為最後一個位置不放元素
return *this;
}
_Self operator--(int) {
_Self __tmp = *this;
--*this;
return __tmp;
}
_Self& operator+=(difference_type __n) //過載+=運算子
{
difference_type __offset = __n + (_M_cur - _M_first); //獲取偏移量
if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) //偏移在當前緩衝區塊
_M_cur += __n;
else { //偏移超過當前區塊
difference_type __node_offset =
__offset > 0 ? __offset / difference_type(_S_buffer_size())
: -difference_type((-__offset - 1) / _S_buffer_size()) - 1; //獲取區塊節點偏移
_M_set_node(_M_node + __node_offset); //調到偏移緩衝區塊
_M_cur = _M_first +
(__offset - __node_offset * difference_type(_S_buffer_size())); //調整當前位置指標
}
return *this;
}
_Self operator+(difference_type __n) const //過載+運算子,const
{
_Self __tmp = *this;
return __tmp += __n;
}
_Self& operator-=(difference_type __n) { return *this += -__n; } //過載-=運算子
_Self operator-(difference_type __n) const { //過載-運算子,const
_Self __tmp = *this;
return __tmp -= __n;
}
reference operator[](difference_type __n) const { return *(*this + __n); } //過載[]運算子
bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; } //過載==運算子
bool operator!=(const _Self& __x) const { return !(*this == __x); }
bool operator<(const _Self& __x) const { //過載<運算子
return (_M_node == __x._M_node) ?
(_M_cur < __x._M_cur) : (_M_node < __x._M_node);
}
bool operator>(const _Self& __x) const { return __x < *this; } //過載>運算子
bool operator<=(const _Self& __x) const { return !(__x < *this); } //過載<=運算子
bool operator>=(const _Self& __x) const { return !(*this < __x); } //過載>=運算子
void _M_set_node(_Map_pointer __new_node) { //跳到另一緩衝區塊
_M_node = __new_node;
_M_first = *__new_node;
_M_last = _M_first + difference_type(_S_buffer_size());
}
};
template <class _Tp, class _Ref, class _Ptr>
inline _Deque_iterator<_Tp, _Ref, _Ptr>
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) //過載+運算子,模板函式
{
return __x + __n;
}
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _Tp, class _Ref, class _Ptr>
inline random_access_iterator_tag
iterator_category(const _Deque_iterator<_Tp,_Ref,_Ptr>&)
{
return random_access_iterator_tag(); //隨機訪問迭代器
}
template <class _Tp, class _Ref, class _Ptr>
inline _Tp* value_type(const _Deque_iterator<_Tp,_Ref,_Ptr>&) { return 0; }
template <class _Tp, class _Ref, class _Ptr>
inline ptrdiff_t* distance_type(const _Deque_iterator<_Tp,_Ref,_Ptr>&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
空間配置器
#ifdef __STL_USE_STD_ALLOCATORS
// Base class for ordinary allocators.
template <class _Tp, class _Alloc, bool __is_static>
class _Deque_alloc_base {
public:
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
_Deque_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_map_allocator(__a),
_M_map(0), _M_map_size(0)
{}
protected:
typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
_Map_allocator_type;
allocator_type _M_node_allocator;
_Map_allocator_type _M_map_allocator;
_Tp* _M_allocate_node() {
return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
}
void _M_deallocate_node(_Tp* __p) {
_M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
}
_Tp** _M_allocate_map(size_t __n)
{ return _M_map_allocator.allocate(__n); }
void _M_deallocate_map(_Tp** __p, size_t __n)
{ _M_map_allocator.deallocate(__p, __n); }
_Tp** _M_map;
size_t _M_map_size;
};
// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Deque_alloc_base<_Tp, _Alloc, true>
{
public:
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {}
protected:
typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type;
typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type;
_Tp* _M_allocate_node() {
return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
}
void _M_deallocate_node(_Tp* __p) {
_Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
}
_Tp** _M_allocate_map(size_t __n)
{ return _Map_alloc_type::allocate(__n); }
void _M_deallocate_map(_Tp** __p, size_t __n)
{ _Map_alloc_type::deallocate(__p, __n); }
_Tp** _M_map;
size_t _M_map_size;
};
template <class _Tp, class _Alloc>
class _Deque_base
: public _Deque_alloc_base<_Tp,_Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
typedef _Deque_alloc_base<_Tp,_Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
_Deque_base(const allocator_type& __a, size_t __num_elements)
: _Base(__a), _M_start(), _M_finish()
{ _M_initialize_map(__num_elements); }
_Deque_base(const allocator_type& __a)
: _Base(__a), _M_start(), _M_finish() {}
~_Deque_base();
protected:
void _M_initialize_map(size_t);
void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
enum { _S_initial_map_size = 8 };
protected:
iterator _M_start;
iterator _M_finish;
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
class _Deque_base {
public:
typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Deque_base(const allocator_type&, size_t __num_elements)
: _M_map(0), _M_map_size(0), _M_start(), _M_finish() {
_M_initialize_map(__num_elements);
}
_Deque_base(const allocator_type&)
: _M_map(0), _M_map_size(0), _M_start(), _M_finish() {}
~_Deque_base();
protected:
void _M_initialize_map(size_t);
void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
enum { _S_initial_map_size = 8 };
protected:
_Tp** _M_map;
size_t _M_map_size;
iterator _M_start;
iterator _M_finish;
typedef simple_alloc<_Tp, _Alloc> _Node_alloc_type;
typedef simple_alloc<_Tp*, _Alloc> _Map_alloc_type;
_Tp* _M_allocate_node()
{ return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); }
void _M_deallocate_node(_Tp* __p)
{ _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); }
_Tp** _M_allocate_map(size_t __n)
{ return _Map_alloc_type::allocate(__n); }
void _M_deallocate_map(_Tp** __p, size_t __n)
{ _Map_alloc_type::deallocate(__p, __n); }
};
#endif /* __STL_USE_STD_ALLOCATORS */
// Non-inline member functions from _Deque_base.
template <class _Tp, class _Alloc>
_Deque_base<_Tp,_Alloc>::~_Deque_base() {
if (_M_map) {
_M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
_M_deallocate_map(_M_map, _M_map_size);
}
}
template <class _Tp, class _Alloc>
void
_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
{
size_t __num_nodes =
__num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
_M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
_M_map = _M_allocate_map(_M_map_size);
_Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
_Tp** __nfinish = __nstart + __num_nodes;
__STL_TRY {
_M_create_nodes(__nstart, __nfinish);
}
__STL_UNWIND((_M_deallocate_map(_M_map, _M_map_size),
_M_map = 0, _M_map_size = 0));
_M_start._M_set_node(__nstart);
_M_finish._M_set_node(__nfinish - 1);
_M_start._M_cur = _M_start._M_first;
_M_finish._M_cur = _M_finish._M_first +
__num_elements % __deque_buf_size(sizeof(_Tp));
}
template <class _Tp, class _Alloc>
void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
{
_Tp** __cur;
__STL_TRY {
for (__cur = __nstart; __cur < __nfinish; ++__cur)
*__cur = _M_allocate_node();
}
__STL_UNWIND(_M_destroy_nodes(__nstart, __cur));
}
template <class _Tp, class _Alloc>
void
_Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
{
for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
_M_deallocate_node(*__n);
}
deque類實現
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class deque : protected _Deque_base<_Tp, _Alloc> {
...
}
接受兩個模板引數:_Tp(元素型別),_Alloc(空間配置器型別)。繼承自deque基類_Deque_base。
- 型別定義
typedef _Deque_base<_Tp, _Alloc> _Base;
public: // Basic types
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
public: // Iterators
typedef typename _Base::iterator iterator;
typedef typename _Base::const_iterator const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type>
const_reverse_iterator;
typedef reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected: // Internal typedefs
typedef pointer* _Map_pointer;
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
- 構造器
explicit deque(const allocator_type& __a = allocator_type())
: _Base(__a, 0) {}
deque(const deque& __x) : _Base(__x.get_allocator(), __x.size())
{ uninitialized_copy(__x.begin(), __x.end(), _M_start); }
deque(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type()) : _Base(__a, __n)
{ _M_fill_initialize(__value); }
explicit deque(size_type __n) : _Base(allocator_type(), __n)
{ _M_fill_initialize(value_type()); }
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
deque(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_initialize_map(__n);
_M_fill_initialize(__x);
}
template <class _InputIter>
void _M_initialize_dispatch(_InputIter __first, _InputIter __last,
__false_type) {
_M_range_initialize(__first, __last, __ITERATOR_CATEGORY(__first));
}
#else /* __STL_MEMBER_TEMPLATES */
deque(const value_type* __first, const value_type* __last,
const allocator_type& __a = allocator_type())
: _Base(__a, __last - __first)
{ uninitialized_copy(__first, __last, _M_start); }
deque(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a, __last - __first)
{ uninitialized_copy(__first, __last, _M_start); }
#endif /* __STL_MEMBER_TEMPLATES */
- 析構器
~deque() { destroy(_M_start, _M_finish); }
- 拷貝賦值運算子
deque& operator= (const deque& __x) {
const size_type __len = size();
if (&__x != this) {
if (__len >= __x.size())
erase(copy(__x.begin(), __x.end(), _M_start), _M_finish);
else {
const_iterator __mid = __x.begin() + difference_type(__len);
copy(__x.begin(), __mid, _M_start);
insert(_M_finish, __mid, __x.end());
}
}
return *this;
}
- 迭代器
iterator begin() { return _M_start; }
iterator end() { return _M_finish; }
const_iterator begin() const { return _M_start; }
const_iterator end() const { return _M_finish; }
reverse_iterator rbegin() { return reverse_iterator(_M_finish); }
reverse_iterator rend() { return reverse_iterator(_M_start); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(_M_finish); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(_M_start); }
- 容量
size_type size() const { return _M_finish - _M_start; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return _M_finish == _M_start; }
void resize(size_type __new_size, const value_type& __x) {
const size_type __len = size();
if (__new_size < __len)
erase(_M_start + __new_size, _M_finish);
else
insert(_M_finish, __new_size - __len, __x);
}
void resize(size_type new_size) { resize(new_size, value_type()); }
- 元素訪問
reference operator[](size_type __n)
{ return _M_start[difference_type(__n)]; }
const_reference operator[](size_type __n) const
{ return _M_start[difference_type(__n)]; }
#ifdef __STL_THROW_RANGE_ERRORS
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__stl_throw_range_error("deque");
}
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
#endif /* __STL_THROW_RANGE_ERRORS */
reference front() { return *_M_start; }
reference back() {
iterator __tmp = _M_finish;
--__tmp;
return *__tmp;
}
const_reference front() const { return *_M_start; }
const_reference back() const {
const_iterator __tmp = _M_finish;
--__tmp;
return *__tmp;
}
- 修改器
assign
void _M_fill_assign(size_type __n, const _Tp& __val) {
if (__n > size()) {
fill(begin(), end(), __val);
insert(end(), __n - size(), __val);
}
else {
erase(begin() + __n, end());
fill(begin(), end(), __val);
}
}
void assign(size_type __n, const _Tp& __val) {
_M_fill_assign(__n, __val);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
private: // helper functions for assign()
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_assign_aux(__first, __last, __ITERATOR_CATEGORY(__first));
}
template <class _InputIterator>
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __len = 0;
distance(__first, __last, __len);
if (__len > size()) {
_ForwardIterator __mid = __first;
advance(__mid, size());
copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
else
erase(copy(__first, __last, begin()), end());
}
#endif /* __STL_MEMBER_TEMPLATES */
push_back,push_front,pop_back,pop_front
void push_back(const value_type& __t) {
if (_M_finish._M_cur != _M_finish._M_last - 1) {
construct(_M_finish._M_cur, __t);
++_M_finish._M_cur;
}
else
_M_push_back_aux(__t);
}
void push_back() {
if (_M_finish._M_cur != _M_finish._M_last - 1) {
construct(_M_finish._M_cur);
++_M_finish._M_cur;
}
else
_M_push_back_aux();
}
void push_front(const value_type& __t) {
if (_M_start._M_cur != _M_start._M_first) {
construct(_M_start._M_cur - 1, __t);
--_M_start._M_cur;
}
else
_M_push_front_aux(__t);
}
void push_front() {
if (_M_start._M_cur != _M_start._M_first) {
construct(_M_start._M_cur - 1);
--_M_start._M_cur;
}
else
_M_push_front_aux();
}
void pop_back() {
if (_M_finish._M_cur != _M_finish._M_first) {
--_M_finish._M_cur;
destroy(_M_finish._M_cur);
}
else
_M_pop_back_aux();
}
void pop_front() {
if (_M_start._M_cur != _M_start._M_last - 1) {
destroy(_M_start._M_cur);
++_M_start._M_cur;
}
else
_M_pop_front_aux();
}
insert
iterator insert(iterator position, const value_type& __x) {
if (position._M_cur == _M_start._M_cur) {
push_front(__x);
return _M_start;
}
else if (position._M_cur == _M_finish._M_cur) {
push_back(__x);
iterator __tmp = _M_finish;
--__tmp;
return __tmp;
}
else {
return _M_insert_aux(position, __x);
}
}
iterator insert(iterator __position)
{ return insert(__position, value_type()); }
void insert(iterator __pos, size_type __n, const value_type& __x)
{ _M_fill_insert(__pos, __n, __x); }
void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, (size_type) __n, (value_type) __x);
}
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
insert(__pos, __first, __last, __ITERATOR_CATEGORY(__first));
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __pos,
const value_type* __first, const value_type* __last);
void insert(iterator __pos,
const_iterator __first, const_iterator __last);
#endif /* __STL_MEMBER_TEMPLATES */
erase
iterator erase(iterator __pos) {
iterator __next = __pos;
++__next;
difference_type __index = __pos - _M_start;
if (size_type(__index) < (this->size() >> 1)) {
copy_backward(_M_start, __pos, __next);
pop_front();
}
else {
copy(__next, _M_finish, __pos);
pop_back();
}
return _M_start + __index;
}
iterator erase(iterator __first, iterator __last);
swap
void swap(deque& __x) {
__STD::swap(_M_start, __x._M_start);
__STD::swap(_M_finish, __x._M_finish);
__STD::swap(_M_map, __x._M_map);
__STD::swap(_M_map_size, __x._M_map_size);
}
template <class _Tp, class _Alloc>
inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) {
__x.swap(__y);
}
clear
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::clear()
{
for (_Map_pointer __node = _M_start._M_node + 1;
__node < _M_finish._M_node;
++__node) {
destroy(*__node, *__node + _S_buffer_size());
_M_deallocate_node(*__node);
}
if (_M_start._M_node != _M_finish._M_node) {
destroy(_M_start._M_cur, _M_start._M_last);
destroy(_M_finish._M_first, _M_finish._M_cur);
_M_deallocate_node(_M_finish._M_first);
}
else
destroy(_M_start._M_cur, _M_finish._M_cur);
_M_finish = _M_start;
}
- 關係運算符過載
template <class _Tp, class _Alloc>
inline bool operator==(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Tp, class _Alloc>
inline bool operator<(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline bool operator!=(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return !(__x == __y);
}
template <class _Tp, class _Alloc>
inline bool operator>(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return __y < __x;
}
template <class _Tp, class _Alloc>
inline bool operator<=(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return !(__y < __x);
}
template <class _Tp, class _Alloc>
inline bool operator>=(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return !(__x < __y);
}