【Python學習筆記】Pandas庫之DataFrame
1 簡介
DataFrame是Python中Pandas庫中的一種數據結構,它類似excel,是一種二維表。
或許說它可能有點像matlab的矩陣,但是matlab的矩陣只能放數值型值(當然matlab也可以用cell存放多類型數據),DataFrame的單元格可以存放數值、字符串等,這和excel表很像。
同時DataFrame可以設置列名columns與行名index,可以通過像matlab一樣通過位置獲取數據也可以通過列名和行名定位,具體方法在後面細說。
2 創建DataFrame
首先聲明一下,以下都是使用的Python 3.6.5版本為例,Python2應該也差不多吧(大概
在所有操作之前當然要先import必要的pandas庫,因為pandas常與numpy一起配合使用,所以也一起import吧。
import pandas as pd
import numpy as np
如果還沒安裝直接在cmd裏pip安裝吧,如果有版本選擇問題,參看之前的帖子。
pip install pandas
pip install numpy
2.1 直接創建
可以直接使用pandas的DataFrame函數創建,比如接下來我們隨機創建一個4*4的DataFrame。
df1=pd.DataFrame(np.random.randn(4,4),index=list(‘ABCD‘),columns=list(‘ABCD‘))
其中第一個參數是存放在DataFrame裏的數據,第二個參數index就是之前說的行名(或者應該叫索引?),第三個參數columns是之前說的列名。
後兩個參數可以使用list輸入,但是註意,這個list的長度要和DataFrame的大小匹配,不然會報錯。當然,這兩個參數是可選的,你可以選擇不設置。
而且發現,這兩個list是可以一樣的,但是每行每列的名字在index或columns裏要是唯一的。
使用python自己的shell展示創建的結果是這樣的:
或者在jupyter裏面更酷點的樣子,接下來都使用jupyter輸出展示吧。
當然,如果你的數據量賊小,也可以自己輸入創建,類似這樣。
df2=pd.DataFrame([[1,2,3,4],[2,3,4,5],
[3,4,5,6],[4,5,6,7]],
index=list(‘ABCD‘),columns=list(‘ABCD‘))
這樣也可以得到這樣子的DataFrame:
2.2 使用字典創建
仍然是使用DataFrame這個函數,但是字典的每個key的value代表一列,而key是這一列的列名。比如這樣。
dic1={‘name‘:[‘小明‘,‘小紅‘,‘狗蛋‘,‘鐵柱‘],‘age‘:[17,20,5,40],‘gender‘:[‘男‘,‘女‘,‘女‘,‘男‘]}
df3=pd.DataFrame(dic1)
輸出結果是這樣的
3 查看與篩選數據
python沒有matlab的工作區直接查看變量與內容,這大概是python科學計算的一個缺點。所以需要格外的代碼來查看,最基本的直接寫變量名與print就不說了。
3.1 查看列的數據類型
使用dtypes方法可以查看各列的數據類型,比如說剛剛的df3。
df3.dtypes
輸出的結果是這樣:
3.2 查看DataFrame的頭尾
使用head可以查看前幾行的數據,默認的是前5行,不過也可以自己設置。
使用tail可以查看後幾行的數據,默認也是5行,參數可以自己設置。
比如隨意設置一個6*6的數據,只看前5行。
df4=pd.DataFrame(np.random.randn(6,6))
df4.head()
比如只看前3行。
df4.head(3)
比如看後5行。
df4.tail()
比如只看後2行。
df4.tail(2)
3.3 查看行名與列名
使用index查看行名,columns查看列名。具體由例子感受吧。
查看行名。
df1.index
查看列名。
df3.columns
3.4 查看數據值
使用values可以查看DataFrame裏的數據值,返回的是一個數組。
比如說查看所有的數據值。
df3.values
比如說查看某一列所有的數據值。
df3[‘name‘].values
還有另一種操作,使用loc或者iloc查看數據值(但是好像只能根據行來查看?)。區別是loc是根據行名,iloc是根據數字索引(也就是行號)。
比如說這樣。
df1.loc[‘A‘]
或者這樣。
df1.iloc[0]
按列進行索引查看數據還能直接使用列名,但這種方法對行索引不適用。
df3[‘name‘]
3.5 查看行列數
使用shape查看行列數,參數為0表示查看行數,參數為1表示查看列數。
df3.shape[0]
df3.shape[1]
4 基本操作
DataFrame有些方法可以直接進行數據統計,矩陣計算之類的基本操作。
4.1 轉置
直接字母T,線性代數上線。
比如說把之前的df2轉置一下。
df3.T
4.2 描述性統計
使用describe可以對數據根據列進行描述性統計。
比如說對df1進行描述性統計。
df1.describe()
如果有的列是非數值型的,那麽就不會進行統計。
如果想對行進行描述性統計,請參看4.1(轉置後進行describe呀!)
4.3 計算
使用sum默認對每列求和,sum(1)為對每行求和。比如
df3.sum()
可以發現就算元素是字符串,使用sum也會加起來。
df3.sum(1)
而一行中,有字符串有數值則只計算數值。
數乘運算使用apply,比如。
df2.apply(lambda x:x*2)
如果元素是字符串,則會把字符串再重復一遍。
乘方運算跟matlab類似,直接使用兩個*,比如。
df2**2
乘方運算如果有元素是字符串的話,就會報錯。
4.4 新增
擴充列可以直接像字典一樣,列名對應一個list,但是註意list的長度要跟index的長度一致。
df2[‘E‘]=[‘999‘,‘999‘,‘999‘,‘999‘]
df2
還可以使用insert,使用這個方法可以指定把列插入到第幾列,其他的列順延。
df2.insert(0,‘F‘,[888,888,888,888])
df2
4.5 合並
使用join可以將兩個DataFrame合並,但只根據行列名合並,並且以作用的那個DataFrame的為基準。如下所示,新的df7是以df2的行號index為基準的。
df6=pd.DataFrame([‘my‘,‘name‘,‘is‘,‘a‘],index=list(‘ACDH‘),columns=list(‘G‘))
df6
df7=df2.join(df6)
df7
但是,join這個方法還有how這個參數可以設置,合並兩個DataFrame的交集或並集。參數為‘inner‘表示交集,‘outer‘表示並集。
df8=df2.join(df6,how=‘inner‘)
df8
df9=df2.join(df6,how=‘outer‘)
df9
如果要合並多個Dataframe,可以用list把幾個Dataframe裝起來,然後使用concat轉化為一個新的Dataframe。
df10=pd.DataFrame([1,2,3,4],index=list(‘ABCD‘),columns=[‘a‘])
df11=pd.DataFrame([10,20,30,40],index=list(‘ABCD‘),columns=[‘b‘])
df12=pd.DataFrame([100,200,300,400],index=list(‘ABCD‘),columns=[‘c‘])
list1=[df10.T, df11.T, df12.T]
df13=pd.concat(list1)
df13
【Python學習筆記】Pandas庫之DataFrame