Word2vec之情感語義分析實戰(part3)--利用分散式詞向量完成監督學習任務
引言
這篇部落格將基於前面一篇部落格Part2做進一步的探索與實戰。
demo程式碼與資料:傳送門
單詞的數值化表示
前面我們訓練了單詞的語義理解模型。如果我們深入研究就會發現,Part2中訓練好的模型是由詞彙表中單詞的特徵向量所組成的。這些特徵向量儲存在叫做syn0的numpy陣列中:
# Load the model that we created in Part 2
from gensim.models import Word2Vec
model = Word2Vec.load("300features_40minwords_10context")
#type(model.syn0)
#model.syn0.shape
type(model.wv.syn0)
model.wv.syn0.shape
[output] numpy.ndarray
[output] (16490, 300)
很明顯這個numpy陣列大小為(16490,300)分別代表詞彙表單詞數目及每個單詞對應的特徵數。單個單詞向量可以直接通過下面的形式訪問:
model["flower"]
從單詞到段落,嘗試1:向量平均
在IMDB資料集中,每段評論的長度都是不一樣的,在這裡我們需要先將一個獨立的單詞向量轉換成等長的特徵集合。因為每個單詞都是個三百維的特徵向量,我們就能夠使用向量操作將每段評論中的單詞結合在一起。在這個例子中,我們就簡單地將單詞向量做個平均,並去除停用詞,因為加入停用詞只會增加噪聲。程式碼如下:
import numpy as np # Make sure that numpy is imported
def makeFeatureVec(words, model, num_features):
# Function to average all of the word vectors in a given
# paragraph
#
# Pre-initialize an empty numpy array (for speed)
featureVec = np.zeros((num_features,),dtype="float32" )
#
nwords = 0.
#
# Index2word is a list that contains the names of the words in
# the model's vocabulary. Convert it to a set, for speed
index2word_set = set(model.index2word)
#
# Loop over each word in the review and, if it is in the model's
# vocaublary, add its feature vector to the total
for word in words:
if word in index2word_set:
nwords = nwords + 1.
featureVec = np.add(featureVec,model[word])
#
# Divide the result by the number of words to get the average
featureVec = np.divide(featureVec,nwords)
return featureVec
def getAvgFeatureVecs(reviews, model, num_features):
# Given a set of reviews (each one a list of words), calculate
# the average feature vector for each one and return a 2D numpy array
#
# Initialize a counter
counter = 0
#
# Preallocate a 2D numpy array, for speed
reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32")
#
# Loop through the reviews
for review in reviews:
#
# Print a status message every 1000th review
if counter%1000 == 0:
print "Review %d of %d" % (counter, len(reviews))
#
# Call the function (defined above) that makes average feature vectors
reviewFeatureVecs[counter] = makeFeatureVec(review, model, \
num_features)
#
# Increment the counter
counter = counter + 1
return reviewFeatureVecs
接下來我們利用Part2中讀取到的訓練集與測試集,分別對其做向量平均:
# ****************************************************************
# Calculate average feature vectors for training and testing sets,
# using the functions we defined above. Notice that we now use stop word
# removal.
import pandas as pd
# Read data from files
train = pd.read_csv( "./data/labeledTrainData.tsv", header=0,
delimiter="\t", quoting=3 )
test = pd.read_csv( "./data/testData.tsv", header=0, delimiter="\t", quoting=3 )
unlabeled_train = pd.read_csv( "./data/unlabeledTrainData.tsv", header=0,
delimiter="\t", quoting=3 )
# Verify the number of reviews that were read (100,000 in total)
print("Read %d labeled train reviews, %d labeled test reviews, " \
"and %d unlabeled reviews\n" % (train["review"].size,
test["review"].size, unlabeled_train["review"].size ))
# Import various modules for string cleaning
from bs4 import BeautifulSoup
import re
from nltk.corpus import stopwords
def review_to_wordlist( review, remove_stopwords=False ):
# Function to convert a document to a sequence of words,
# optionally removing stop words. Returns a list of words.
#
# 1. Remove HTML
review_text = BeautifulSoup(review).get_text()
#
# 2. Remove non-letters
review_text = re.sub("[^a-zA-Z]"," ", review_text)
#
# 3. Convert words to lower case and split them
words = review_text.lower().split()
#
# 4. Optionally remove stop words (false by default)
if remove_stopwords:
stops = set(stopwords.words("english"))
words = [w for w in words if not w in stops]
#
# 5. Return a list of words
return(words)
# Download the punkt tokenizer for sentence splitting
num_features = 300 # Word vector dimensionality
clean_train_reviews = []
for review in train["review"]:
clean_train_reviews.append( review_to_wordlist( review, \
remove_stopwords=True ))
trainDataVecs = getAvgFeatureVecs( clean_train_reviews, model, num_features )
print("Creating average feature vecs for test reviews")
clean_test_reviews = []
for review in test["review"]:
clean_test_reviews.append( review_to_wordlist( review, \
remove_stopwords=True ))
testDataVecs = getAvgFeatureVecs( clean_test_reviews, model, num_features )
接下來我們使用隨機森林來做預測,程式碼如下:
# Fit a random forest to the training data, using 100 trees
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier( n_estimators = 100 )
print "Fitting a random forest to labeled training data..."
forest = forest.fit( trainDataVecs, train["sentiment"] )
# Test & extract results
result = forest.predict( testDataVecs )
# Write the test results
output = pd.DataFrame( data={"id":test["id"], "sentiment":result} )
output.to_csv( "Word2Vec_AverageVectors.csv", index=False, quoting=3 )
我們發現,這一結果比偶然發現的結果好得多,但卻比我們在Part1中使用詞袋模型準確率降低了幾個百分點。
由於向量平均沒有產生驚人的結果,也許我們可以用更聰明的方法來做?加權詞向量的一種標準方法是應用“tf - idf”權重,它衡量一個給定單詞在給定文件集合中的重要性。在Python中提取tf - idf權重的一種方法是使用scikitt - learn的TfidfVectorizer,它的介面與我們在Part1中使用的CountVectorizer類似。然而,增加權重依然沒有太大的改變。
因此向量平均及tf-idf都沒啥重大改善,接下來我們來嘗試利用聚類看看能夠改善效果
從單詞到段落,嘗試2:聚類
Word2Vec建立語義相關單詞的聚類,因此另一種可能的方法是利用聚類中單詞的相似性。以這種方式對向量進行分組稱為“向量量化”。為了實現這一點,我們首先需要找到單詞簇的中心,我們可以通過使用諸如k - means這樣的聚類演算法來實現。
在K - means中,我們需要設定的一個引數是“K”,即簇的數量。我們應該如何決定要建立多少個叢集?試驗和錯誤表明,平均只有5個單詞的小簇比使用多個單詞的大型簇具有更好的結果。聚類程式碼如下所示。我們使用scikit-learn來執行我們的k - means。
from sklearn.cluster import KMeans
import time
start = time.time() # Start time
# Set "k" (num_clusters) to be 1/5th of the vocabulary size, or an
# average of 5 words per cluster
word_vectors = model.wv.syn0
num_clusters = word_vectors.shape[0] / 5
# Initalize a k-means object and use it to extract centroids
kmeans_clustering = KMeans( n_clusters = num_clusters )
idx = kmeans_clustering.fit_predict( word_vectors )
# Get the end time and print how long the process took
end = time.time()
elapsed = end - start
print("Time taken for K Means clustering: ", elapsed, "seconds.")
為每個單詞分配的簇被儲存在idx中,我們原始Word2Vec模型中的詞彙表仍然儲存在model.wv.index2word中。為了方便起見,我們將這些內容壓縮成一個字典,如下所示:
# Create a Word / Index dictionary, mapping each vocabulary word to
# a cluster number
word_centroid_map = dict(zip( model.wv.index2word, idx ))
我們打印出前10個聚類中心,看下效果:
# For the first 10 clusters
for cluster in range(0,10):
#
# Print the cluster number
print("\nCluster %d" % cluster)
#
# Find all of the words for that cluster number, and print them out
words = []
for i in xrange(0,len(word_centroid_map.values())):
if( list(word_centroid_map.values())[i] == cluster ):
words.append(list(word_centroid_map.keys())[i])
print(words)
我們可以看到,聚類質量參差不齊。有一些是有意義的——聚類3主要包含名稱,而聚類6 - 8包含相關的形容詞(聚類6是我所需要的情感形容詞)。另一方面,聚類5有一點神祕:龍蝦和鹿有什麼共同之處(除了是兩種動物之外)?聚類0更糟糕:頂層公寓和套房似乎屬於同一類,但它們似乎不屬於蘋果和護照。聚類2包含了戰爭相關的單詞?也許我們的聚類演算法在形容詞上最好用。
無論如何,現在我們對每個單詞都有一個聚類(或“centroid”)賦值,我們可以定義一個函式來將評論轉換成聚類袋。這就像詞袋模型,但這使用語義相關的簇而不是單個單詞:
def create_bag_of_centroids( wordlist, word_centroid_map ):
#
# The number of clusters is equal to the highest cluster index
# in the word / centroid map
num_centroids = max( word_centroid_map.values() ) + 1
#
# Pre-allocate the bag of centroids vector (for speed)
bag_of_centroids = np.zeros( num_centroids, dtype="float32" )
#
# Loop over the words in the review. If the word is in the vocabulary,
# find which cluster it belongs to, and increment that cluster count
# by one
for word in wordlist:
if word in word_centroid_map:
index = word_centroid_map[word]
bag_of_centroids[index] += 1
#
# Return the "bag of centroids"
return bag_of_centroids
上面的函式將為每段評論提供一個numpy陣列,每段評論的特徵數量與簇數量相等。最後,我們為我們的訓練和測試集建立了聚類袋,然後訓練隨機森林並提取結果:
from sklearn.ensemble import RandomForestClassifier
# Pre-allocate an array for the training set bags of centroids (for speed)
train_centroids = np.zeros( (train["review"].size, num_clusters), \
dtype="float32" )
# Transform the training set reviews into bags of centroids
counter = 0
for review in clean_train_reviews:
train_centroids[counter] = create_bag_of_centroids( review, \
word_centroid_map )
counter += 1
# Repeat for test reviews
test_centroids = np.zeros(( test["review"].size, num_clusters), \
dtype="float32" )
counter = 0
for review in clean_test_reviews:
test_centroids[counter] = create_bag_of_centroids( review, \
word_centroid_map )
counter += 1
# Fit a random forest and extract predictions
forest = RandomForestClassifier(n_estimators = 100)
# Fitting the forest may take a few minutes
print("Fitting a random forest to labeled training data...")
forest = forest.fit(train_centroids,train["sentiment"])
result = forest.predict(test_centroids)
# Write the test results
output = pd.DataFrame(data={"id":test["id"], "sentiment":result})
output.to_csv( "BagOfCentroids.csv", index=False, quoting=3 )
總結
我們發現,上面的程式碼與Part1中詞袋模型的結果大致相同。這並不是說咱們的Word2vec沒啥用,只是在這個應用上情感分析上Google出的doc2vec更好而已。
demo程式碼與資料:傳送門