【模板】網路流
阿新 • • 發佈:2019-01-23
1.邊從2標號算起,j和j^1互為反邊。
2.棋盤一般都是二分圖模型,連邊注意方向!
3.分配限制用最大流卡流,取捨限制用最小割決策。
2.棋盤一般都是二分圖模型,連邊注意方向!
3.分配限制用最大流卡流,取捨限制用最小割決策。
常見模型:最大匹配模型、最小割模型、最小路徑覆蓋模型
有時候需要配合二分。
Code:
#include<cstdio> #include<algorithm> using namespace std; const int Sn = 10010, Sm = 1000010 *2, oo = (int)1e9; int n,m,s,t,la[Sn],to[Sm],nx[Sm],rs[Sm],fy[Sm],dn,bn=1; int ln[Sn],l,r,vis[Sn],V,hei[Sn],top; int next[Sn],hd,tl,tmp,dis[Sn],il[Sn],pp[Sn],pre[Sn]; int maxflow,totfy; void link(int u, int v, int w) { bn++, to[bn] = v, rs[bn] = w, nx[bn] = la[u], la[u] = bn; bn++, to[bn] = u, rs[bn] = 0, nx[bn] = la[v], la[v] = bn; } bool bfs() { vis[t] = ++V, hei[t] = 1; for(ln[l=r=1] = t; l <= r; l++) for(int j = la[ln[l]]; j; j = nx[j]) if(rs[j^1] && vis[to[j]] != V) { hei[to[j]] = hei[ln[l]] + 1, vis[to[j]] = V; ln[++r] = to[j]; if(to[j] == s) return true; } return false; } int dfs(int d, int p) { int flow = 0, f; if(d == t || p == 0) return p; for(int j = la[d]; j; j = nx[j]) if(vis[to[j]] == V && hei[to[j]] == hei[d] - 1) if(rs[j] && ( f = dfs(to[j], min(p,rs[j])) ) > 0) { rs[j] -= f, rs[j^1] += f; flow += f, p -= f; if(!p) return flow; } hei[d] = oo; return flow; } bool spfa() { for(int i = 1; i <= dn; i ++) dis[i] = oo; dis[s] = 0, pp[s] = oo; // WA for(il[hd=tl=s] = true; hd; tmp=hd, hd=next[hd], next[tmp]=il[tmp]=0) for(int j = la[hd], o; j; j = nx[j]) if(rs[j] && (o = dis[hd] + fy[j]) < dis[to[j]] && o <= dis[t]) { dis[to[j]] = dis[hd] + fy[j], pp[to[j]] = min(pp[hd], rs[j]); pre[to[j]] = j ^ 1; if(!il[to[j]]) { if(hd != tl && dis[to[j]] < dis[next[hd]]) next[to[j]] = next[hd], next[hd] = to[j]; else next[tl] = to[j], tl = to[j]; il[to[j]] = true; } } if(dis[t] == oo) return false; for(int j = t; j != s; j = to[pre[j]]) rs[pre[j]^1] -= pp[t], rs[pre[j]] += pp[t]; totfy += dis[t] * pp[t], maxflow += pp[t]; return true; }