1. 程式人生 > >在hadoop yarn上執行spark報錯

在hadoop yarn上執行spark報錯

[email protected]:/usr/local/hadoop/etc/hadoop$ HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop/ pyspark --master yarn --deploy-mode client
Python 2.7.14 |Anaconda, Inc.| (default, Dec  7 2017, 17:05:42) 
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
18/06/15 10:25:33 WARN NativeCodeLoader: Unable to
load native-hadoop library for your platform... using builtin-java classes where applicable 18/06/15 10:25:39 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. 18/06/15 10:26:39 ERROR YarnClientSchedulerBackend: Yarn application has already exited with
state FINISHED! 18/06/15 10:26:39 ERROR TransportClient: Failed to send RPC 7707247702813566843 to /10.200.68.191:56658: java.nio.channels.ClosedChannelException java.nio.channels.ClosedChannelException at io.netty.channel.AbstractChannel$AbstractUnsafe.write(...)(Unknown Source) 18/06/15 10:26:39 ERROR YarnSchedulerBackend$YarnSchedulerEndpoint: Sending RequestExecutors(0
,0,Map(),Set()) to AM was unsuccessful java.io.IOException: Failed to send RPC 7707247702813566843 to /10.200.68.191:56658: java.nio.channels.ClosedChannelException at org.apache.spark.network.client.TransportClient.lambda$sendRpc$2(TransportClient.java:237) at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:507) at io.netty.util.concurrent.DefaultPromise.notifyListenersNow(DefaultPromise.java:481) at io.netty.util.concurrent.DefaultPromise.access$000(DefaultPromise.java:34) at io.netty.util.concurrent.DefaultPromise$1.run(DefaultPromise.java:431) at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163) at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:403) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:463) at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858) at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138) at java.lang.Thread.run(Thread.java:748) Caused by: java.nio.channels.ClosedChannelException at io.netty.channel.AbstractChannel$AbstractUnsafe.write(...)(Unknown Source) 18/06/15 10:26:39 ERROR Utils: Uncaught exception in thread Yarn application state monitor org.apache.spark.SparkException: Exception thrown in awaitResult: at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.requestTotalExecutors(CoarseGrainedSchedulerBackend.scala:566) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend.stop(YarnSchedulerBackend.scala:95) at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.stop(YarnClientSchedulerBackend.scala:155) at org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:508) at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1752) at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1924) at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357) at org.apache.spark.SparkContext.stop(SparkContext.scala:1923) at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend$MonitorThread.run(YarnClientSchedulerBackend.scala:112) Caused by: java.io.IOException: Failed to send RPC 7707247702813566843 to /10.200.68.191:56658: java.nio.channels.ClosedChannelException at org.apache.spark.network.client.TransportClient.lambda$sendRpc$2(TransportClient.java:237) at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:507) at io.netty.util.concurrent.DefaultPromise.notifyListenersNow(DefaultPromise.java:481) at io.netty.util.concurrent.DefaultPromise.access$000(DefaultPromise.java:34) at io.netty.util.concurrent.DefaultPromise$1.run(DefaultPromise.java:431) at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163) at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:403) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:463) at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858) at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138) at java.lang.Thread.run(Thread.java:748) Caused by: java.nio.channels.ClosedChannelException at io.netty.channel.AbstractChannel$AbstractUnsafe.write(...)(Unknown Source) Traceback (most recent call last): File "/usr/local/spark/python/pyspark/shell.py", line 45, in <module> spark = SparkSession.builder\ File "/usr/local/spark/python/pyspark/sql/session.py", line 183, in getOrCreate session._jsparkSession.sessionState().conf().setConfString(key, value) File "/usr/local/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py", line 1160, in __call__ File "/usr/local/spark/python/pyspark/sql/utils.py", line 79, in deco raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace) pyspark.sql.utils.IllegalArgumentException: u"Error while instantiating 'org.apache.spark.sql.hive.HiveSessionStateBuilder':" >>> sc.master Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'sc' is not defined
<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

重啟 格式化叢集 問題解決
這裡寫圖片描述

相關推薦

hadoop yarn執行spark

[email protected]:/usr/local/hadoop/etc/hadoop$ HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop/ pyspark --master yarn --deploy-m

sqoop接入kerberos安全認證後,本地執行正常,但提交到yarn連線hive: Unable to obtain password from user

日誌資訊: 2018-09-17 11:31:30,774 INFO [OutputFormatLoader-consumer] com.chinacreator.sqoop.connector.hive.HiveExecutor: 連線hive失敗java.io.IOExc

Yarn執行spark-shell和spark-sql命令列

spark-shell On Yarn 如果你已經有一個正常執行的Hadoop Yarn環境,那麼只需要下載相應版本的Spark,解壓之後做為Spark客戶端即可。 需要配置Yarn的配置檔案目錄,export HADOOP_CONF_DIR=/etc/hadoop/conf &n

YARN執行Spark API

  啟動命令格式: $ ./bin/spark-submit --class path.to.your.Class --master yarn --deploy-mode cluster [options] <app jar> [app options] 例

Spark官方文件》在YARN執行Spark

原文連結 Spark在 0.6.0版本後支援在YARN(hadoop NextGen)上執行,並且在後續版本中不斷改進。 在YARN上啟動Spark 首先,確認 HADOOP_CONF_DIR或YARN_CONF_DIR指向的包含了Hadoop叢集的配置檔案。這些配置用於操作HDFS和連線Y

Spark 官方文件》在YARN執行Spark

在YARN上執行Spark 對 YARN (Hadoop NextGen) 的支援是從Spark-0.6.0開始的,後續的版本也一直持續在改進。 在YARN上啟動 首先確保 HADOOP_CONF_DIR 或者 YARN_CONF_DIR 變數指向一個包含Hadoop叢集客戶端配置檔案的目錄。這些配置用於

YARN 執行 Spark

翻譯中...Running Spark on YARNSupport for running on YARN (Hadoop NextGen) was added to Spark in version 0.6.0, and improved in subsequent re

執行sparkEOFException Kryo和SerializedLambda問題的解決辦法

執行spark報錯EOFException Kryo和SerializedLambda問題的解決辦法 EOFException Kryo問題解決辦法: 釋出到spark的worker工作機的專案依賴庫中刪除底版本的kryo檔案,如下: 在執行環境中刪除kryo-2.21.jar檔案和保留kr

MyEclipse 執行程式:Unsupported major.minor version 51.0(jdk版本錯誤)

Win10+MyEclipse10環境下,部署可執行專案原始檔,需要根據開發開發時使用的JDK版本重新引入jar包: 步驟:①在對應專案上右鍵選擇Build Path——>Configure Bulid Path…,點選Libraries,查詢並替換帶紅叉的jar包(通過Add E

使用arm-none-linux-gnueabi-gcc –o hello hello.c編譯完成,在ARM執行出現

問題: 使用arm-none-linux-gnueabi-gcc –o hello hello.c編譯完成,在ARM上執行出現報錯: -sh: ./hello: No such file or directory 原因: 因為我們的程式使用的是動態連結方式編譯的,而A

Hadoop windows 本地執行Mapreduce Error while running command to get file permissions

package cn.hadoop.mr.flowsum; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path

在海思執行mtcnn

在hi3516板子上執行mtcnn的測試程式時候報錯如下: ./mtcnn: can't load library 'libgomp.so.1' 原因:找不到openmp的庫 解決方法:在PC機編譯器的lib目錄下找到相應的庫拷貝到板子的lib中可以解決上述錯誤。

windows系統執行sparkhadoopCould not locate executable null\bin\winutils.exe in the Hadoop binaries

1.下載 winutils.exe:https://download.csdn.net/download/u010020897/10745623 2.將此檔案放置在某個目錄下,比如C:\winutils\bin\中。 3.在程式的一開始宣告:System.s

Hadoop傳檔案could only be written to 0 of the 1 minReplication nodes.

報錯:org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /home/navy/files/yc.txt could only be written to 0 of the 1 minReplic

Hive on spark FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.spark

cp /opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/lib/spark/lib/spark-assembly.jar /opt/cloudera/parcels/CDH-5.13.3-1.cdh5.13.3.p0.2/lib/hive/lib

Spark執行SQLGC問題

java.lang.OutOfMemoryError: GC overhead limit exceeded at org.apache.spark.unsafe.types.UTF8String.fromAddress(UTF8String.java:102) at org.apach

idea執行mapreduce Could not locate Hadoop executable: C:\hadoop-3.1.1\bin\winutils.exe

  window執行mapreduce報錯   Exception in thread "main" java.lang.RuntimeException: java.io.FileNotFoundException: Could not locate Hadoop executable: C:\ha

windows下連線hadoop執行eclipsePermission denied:

這是許可權問題,試了一下同時也不能在hdfs建立資料夾。 解決: 修改如下hadoop的配置檔案:etc/hadoop/hdfs-site.xml,如沒有的話可以新增上。 <property>      <name>dfs.permissi

python程式碼本地執行傳伺服器後???

本地執行是成功的,程式碼也更新了,但在伺服器上執行程式碼就報錯了,500 Internal Server ErrorThe server encountered an internal error and was unable to complete your request. Either t

eclipse遠端連線hadoop2-5.0執行程式org.apache.hadoop.io.nativeio.NativeIO$Windows

eclipse遠端連線hadoop2-5.0執行程式報錯nativeio: Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$W