高精度乘法 【C++版(簡單模擬版和FFT快速版)和java版】
阿新 • • 發佈:2019-01-30
高精度乘法C++版
簡單模擬版(N^2複雜度):
#include <cstdio> #include <cstring> #include <cstdlib> #include <memory.h> using namespace std; const int MAX=50001; char sa[MAX],sb[MAX],ssum[2*MAX]; int lsum; void bigchenfa(char sa[],char sb[]) { int a[MAX]={0},b[MAX]={0},sum[MAX*2]={0}; int i,j,k ; int la=strlen(sa); int lb=strlen(sb); lsum=0; for(i=1,j=la-1;i<=la;i++,j--) a[i]=sa[j]-'0'; for(i=1,j=lb-1;i<=lb;i++,j--) b[i]=sb[j]-'0'; memset(sum,0,sizeof(sum)); for(i=1;i<=la;i++) for(j=1,lsum=i-1;j<=lb;j++) sum[++lsum]+=b[j]*a[i]; for(i=1;i<=lsum;i++) if(sum[i]>= 10) { if (sum[lsum]>= 10) lsum++; sum[i+1]+=sum[i]/10 ; sum[i]%=10; } for(i=lsum,j=1;i>=1;i--,j++) ssum[j]=sum[i]; } int main(void) { int i,j ; while(scanf("%s%s",sa,sb)!=EOF) { bigchenfa(sa,sb) ; for(i=1;i<=lsum;i++) printf("%d",ssum[i]); } return 0 ; }
FFT加快版:
//FFT 大整數乘法 #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; const int N = 500005; const double pi = acos(-1.0); char s1[N],s2[N]; int len,res[N]; struct Complex { double r,i; Complex(double r=0,double i=0):r(r),i(i) {}; Complex operator+(const Complex &rhs) { return Complex(r + rhs.r,i + rhs.i); } Complex operator-(const Complex &rhs) { return Complex(r - rhs.r,i - rhs.i); } Complex operator*(const Complex &rhs) { return Complex(r*rhs.r - i*rhs.i,i*rhs.r + r*rhs.i); } } va[N],vb[N]; void rader(Complex F[],int len) //len = 2^M,reverse F[i] with F[j] j為i二進位制反轉 { int j = len >> 1; for(int i = 1;i < len - 1;++i) { if(i < j) swap(F[i],F[j]); // reverse int k = len>>1; while(j>=k) { j -= k; k >>= 1; } if(j < k) j += k; } } void FFT(Complex F[],int len,int t) { rader(F,len); for(int h=2;h<=len;h<<=1) { Complex wn(cos(-t*2*pi/h),sin(-t*2*pi/h)); for(int j=0;j<len;j+=h) { Complex E(1,0); //旋轉因子 for(int k=j;k<j+h/2;++k) { Complex u = F[k]; Complex v = E*F[k+h/2]; F[k] = u+v; F[k+h/2] = u-v; E=E*wn; } } } if(t==-1) //IDFT for(int i=0;i<len;++i) F[i].r/=len; } void Conv(Complex a[],Complex b[],int len) //求卷積 { FFT(a,len,1); FFT(b,len,1); for(int i=0;i<len;++i) a[i] = a[i]*b[i]; FFT(a,len,-1); } void init(char *s1,char *s2) { int n1 = strlen(s1),n2 = strlen(s2); len = 1; while(len < 2*n1 || len < 2*n2) len <<= 1; int i; for(i=0;i<n1;++i) { va[i].r = s1[n1-i-1]-'0'; va[i].i = 0; } while(i<len) { va[i].r = va[i].i = 0; ++i; } for(i=0;i<n2;++i) { vb[i].r = s2[n2-i-1]-'0'; vb[i].i = 0; } while(i<len) { vb[i].r = vb[i].i = 0; ++i; } } void gao() { Conv(va,vb,len); memset(res,0,sizeof res); for(int i=0;i<len;++i) { res[i]=va[i].r + 0.5; } for(int i=0;i<len;++i) { res[i+1]+=res[i]/10; res[i]%=10; } int high = 0; for(int i=len-1;i>=0;--i) { if(res[i]) { high = i; break; } } for(int i=high;i>=0;--i) putchar('0'+res[i]); puts(""); } int main() { while(scanf("%s %s",s1,s2)==2) { init(s1,s2); gao(); } return 0; }
java版:
import java.util.Scanner; import java.math.*; import java.text.*; public class Main { public static void main(String[] args) { Scanner cin=new Scanner(System.in); BigInteger a,b; while(cin.hasNext()){ a=cin.nextBigInteger(); b=cin.nextBigInteger(); System.out.println(a.multiply(b)); } } }