1. 程式人生 > >intel向量化指令在矩陣乘應用中的評估

intel向量化指令在矩陣乘應用中的評估

隨著機器學習等人工智慧技術的飛速發展,矩陣乘法的應用越來越多,intel晶片先後提供了不同系列的向量指令,包括mmx、sse、avx等,支援simd操作。後來為了更好地支援矩陣乘法,又增加了fma(Fused Multiply-Add)指令。fma指令需要三個向量引數va,vb,vc,其效果等價於表示式(vavb)+vc,其中的乘法和加法都是面向向量中的元素的,也就是fma指令的結果是一個同樣長度的向量。fma指令的出現為矩陣乘法提供了方便,但是其效果同樣可以用avx指令系列中的乘法和加法的組合來實現,本文使用例子來分析不同向量指令在矩陣乘中的效能和精度。
例子主要計算了一個矩陣W和向量x

的乘積,W的列數等於x的長度,結果仍然是一個向量,長度等於W的行數。程式碼的實現如下。

#include <stdio.h>
#include <time.h>
#include <x86intrin.h>

int main() {
  const int col = 1024, row = 64, num_trails = 1000000;

  float w[row][col];
  float x[col];
  float y[row];
  float scratchpad[8];
  for (int i=0; i<row; i++) {
    for
(int j=0; j<col; j++) { w[i][j]=(float)(rand()%1000)/800.0f; } } for (int j=0; j<col; j++) { x[j]=(float)(rand()%1000)/800.0f; } clock_t t1, t2; // The original matrix multiplication version t1 = clock(); for (int r = 0; r < num_trails; r++) for(int j = 0; j < row; j++) { float
sum = 0; float *wj = w[j]; for(int i = 0; i < col; i++) sum += wj[i] * x[i]; y[j] = sum; } t2 = clock(); float diff = ((float)t2 - (float)t1) / CLOCKS_PER_SEC; printf("\nTime taken: %.2f second.\n", diff); for (int i=0; i<row; i++) { printf("%.4f, ", y[i]); } printf("\n"); // The avx matrix multiplication version. const int col_reduced_8 = col - col % 8; __m256 op0, op1, tgt, tmp_vec; t1 = clock(); for (int r = 0; r < num_trails; r++) for (int i=0; i<row; i++) { float res = 0; tgt = _mm256_setzero_ps(); for (int j = 0; j < col_reduced_8; j += 8) { op0 = __builtin_ia32_loadups256(&x[j]); op1 = __builtin_ia32_loadups256(&w[i][j]); tmp_vec = __builtin_ia32_mulps256(op0, op1); tgt = __builtin_ia32_addps256(tmp_vec, tgt); } __builtin_ia32_storeups256(scratchpad, tgt); for (int k=0; k<8; k++) res += scratchpad[k]; for (int l=col_reduced_8; l<col; l++) { res += w[i][l] * x[l]; } y[i] = res; } t2 = clock(); diff = ((float)t2 - (float)t1) / CLOCKS_PER_SEC; printf("\nTime taken: %.2f second.\n", diff); for (int i=0; i<row; i++) { printf("%.4f, ", y[i]); } printf("\n"); // The fma matrix multiplication version. t1 = clock(); for(int r = 0; r < num_trails; r++) for(int i = 0; i < row; i++) { float rlt = 0; tgt = _mm256_setzero_ps(); for(int j = 0; j < col_reduced_8; j += 8) { op0 = __builtin_ia32_loadups256(&x[j]); op1 = __builtin_ia32_loadups256(&w[i][j]); tgt = _mm256_fmadd_ps(op0, op1, tgt); } __builtin_ia32_storeups256(scratchpad, tgt); for(int k = 0; k < 8; k++) { rlt += scratchpad[k]; } for(int l = col_reduced_8; l < col; l++) { rlt += w[i][l] * x[l]; } y[i] = rlt; } t2 = clock(); diff = ((float)t2 - (float)t1) / CLOCKS_PER_SEC ; printf("\nTime taken: %.2f second.\n", diff); for(int i=0; i<row; i++) { printf("%.4f, ", y[i]); } printf("\n");

在ubuntu系統中,程式的編譯命令是:
gcc -O2 -mfma test.c -o test
需要注意的是,只有在支援fma的晶片結構下,程式才能夠執行。可以通過命令:
cat /proc/cpuinfo | grep fma
來判斷晶片是否支援fma。
其執行結果為:
Time taken: 93.56 second.
409.8341, 413.4546, 398.7332, 399.8303, 404.1195, 402.3861, 394.6979, 412.6429, 409.0014, 390.9019, 400.3911, 392.7900, 400.5019, 418.6781, 399.3336, 404.0719, 414.9839, 411.6887, 396.0086, 406.6972, 384.5781, 399.3724, 400.0473, 391.6383, 401.3511, 400.8543, 418.4066, 406.6425, 405.5102, 408.4534, 403.0285, 406.3510, 410.2005, 414.9617, 417.3602, 406.4511, 397.1705, 406.1265, 393.3314, 407.1777, 389.9053, 397.3145, 401.7866, 413.3134, 415.7482, 414.2341, 403.3439, 405.4922, 395.4076, 399.6389, 409.6675, 419.8184, 412.3336, 399.8252, 403.3434, 387.4861, 402.2747, 399.8241, 414.1568, 405.4861, 406.6151, 410.4040, 408.9755, 398.9610,

Time taken: 10.94 second.
409.8341, 413.4549, 398.7335, 399.8304, 404.1191, 402.3860, 394.6979, 412.6424, 409.0016, 390.9022, 400.3909, 392.7900, 400.5020, 418.6781, 399.3336, 404.0718, 414.9842, 411.6884, 396.0087, 406.6971, 384.5780, 399.3723, 400.0472, 391.6382, 401.3510, 400.8541, 418.4067, 406.6424, 405.5103, 408.4536, 403.0287, 406.3513, 410.2007, 414.9618, 417.3603, 406.4513, 397.1708, 406.1266, 393.3315, 407.1776, 389.9049, 397.3150, 401.7864, 413.3134, 415.7483, 414.2341, 403.3439, 405.4922, 395.4075, 399.6392, 409.6674, 419.8183, 412.3336, 399.8253, 403.3433, 387.4865, 402.2746, 399.8239, 414.1567, 405.4861, 406.6153, 410.4034, 408.9752, 398.9612,

Time taken: 12.08 second.
409.8341, 413.4549, 398.7335, 399.8304, 404.1191, 402.3860, 394.6979, 412.6424, 409.0016, 390.9022, 400.3909, 392.7900, 400.5021, 418.6781, 399.3336, 404.0718, 414.9842, 411.6884, 396.0087, 406.6971, 384.5780, 399.3722, 400.0472, 391.6382, 401.3510, 400.8541, 418.4067, 406.6424, 405.5102, 408.4536, 403.0287, 406.3513, 410.2007, 414.9618, 417.3603, 406.4513, 397.1708, 406.1266, 393.3315, 407.1776, 389.9050, 397.3150, 401.7864, 413.3134, 415.7483, 414.2341, 403.3439, 405.4922, 395.4075, 399.6392, 409.6674, 419.8183, 412.3336, 399.8253, 403.3433, 387.4865, 402.2746, 399.8239, 414.1568, 405.4861, 406.6153, 410.4034, 408.9752, 398.9612,

可見,avx對乘加的組合實現效能還略高於fma指令。而精度兩者相似,略低於原始的運算。