Spark和Flume-ng的整合
阿新 • • 發佈:2019-02-01
Spark可以和Kafka、Flume、Twitter、ZeroMQ 和TCP sockets等進行整合,經過Spark處理,然後寫入到filesystems、databases和live dashboards中。
從上面的圖片可以清楚的瞭解到各個模組所處的位置。這篇文章主要是講述開發Spark
Streaming這塊,因為Flume-ng這塊不需要特別的處理,完全和Flume-ng之間的互動一樣。所有的Spark Streaming程式都是以JavaStreamingContext作為切入點的。如下:
最後需要呼叫JavaStreamingContext的start方法來啟動這個程式。如下:JavaStreamingContext jssc = new JavaStreamingContext(master, appName, new Duration(1000), [sparkHome], [jars]); JavaDStream<SparkFlumeEvent> flumeStream = FlumeUtils.createStream(jssc, host, port);
jssc.start();
jssc.awaitTermination();
整個程式如下:
然後開啟Flume往這邊發資料,在Spark的這端可以接收到資料package scala; import org.apache.flume.source.avro.AvroFlumeEvent; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.VoidFunction; import org.apache.spark.storage.StorageLevel; import org.apache.spark.streaming.Duration; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; import org.apache.spark.streaming.flume.FlumeUtils; import org.apache.spark.streaming.flume.SparkFlumeEvent; import java.nio.ByteBuffer; public static void JavaFlumeEventTest(String master, String host, int port) { Duration batchInterval = new Duration(2000); JavaStreamingContext ssc = new JavaStreamingContext(master, "FlumeEventCount", batchInterval, System.getenv("SPARK_HOME"), JavaStreamingContext.jarOfClass(JavaFlumeEventCount.class)); StorageLevel storageLevel = StorageLevel.MEMORY_ONLY(); JavaDStream<SparkFlumeEvent> flumeStream = FlumeUtils.createStream(ssc, host, port, storageLevel); flumeStream.count().map(new Function<java.lang.Long, String>() { @Override public String call(java.lang.Long in) { return "Received " + in + " flume events."; } }).print(); ssc.start(); ssc.awaitTermination(); }
下面是一段Scala的程式,功能和上面的一樣:
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam
以上程式都是在Spark tandalone Mode下面執行的,如果你想在YARN上面執行,也是可以的,不過需要做點修改。def ScalaFlumeEventTest(master : String, host : String, port : Int) { val batchInterval = Milliseconds(2000) val ssc = new StreamingContext(master, "FlumeEventCount", batchInterval, System.getenv("SPARK_HOME"), StreamingContext.jarOfClass(this.getClass)) val stream = FlumeUtils.createStream(ssc, host,port,StorageLevel.MEMORY_ONLY) stream.count().map(cnt => "Received " + cnt + " flume events." ).print() ssc.start() ssc.awaitTermination() }