有關eigen庫的一些基本使用方法
阿新 • • 發佈:2019-02-02
矩陣、向量初始化
#include <iostream>
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
MatrixXf m1(3,4); //動態矩陣,建立3行4列。
MatrixXf m2(4,3); //4行3列,依此類推。
MatrixXf m3(3,3);
Vector3f v1; //若是靜態陣列,則不用指定行或者列
/* 初始化 */
Matrix3d m = Matrix3d::Random();
m1 = MatrixXf::Zero (3,4); //用0矩陣初始化,要指定行列數
m2 = MatrixXf::Zero(4,3);
m3 = MatrixXf::Identity(3,3); //用單位矩陣初始化
v1 = Vector3f::Zero(); //同理,若是靜態的,不用指定行列數
m1 << 1,0,0,1, //也可以以這種方式初始化
1,5,0,1,
0,0,9,1;
m2 << 1,0,0,
0,4,0,
0,0,7,
1,1,1;
//向量初始化,與矩陣類似
Vector3d v3(1,2,3);
VectorXf vx(30);
}
C++陣列和矩陣轉換
使用Map函式,可以實現Eigen的矩陣和c++中的陣列直接轉換,語法如下:
//@param MatrixType 矩陣型別
//@param MapOptions 可選引數,指的是指標是否對齊,Aligned, or Unaligned. The default is Unaligned.
//@param StrideType 可選引數,步長
/*
Map<typename MatrixType,
int MapOptions,
typename StrideType>
*/
int i;
//陣列轉矩陣
double *aMat = new double[20];
for(i =0;i<20;i++)
{
aMat[i] = rand()%11;
}
//靜態矩陣,編譯時確定維數 Matrix<double,4,5>
Eigen:Map<Matrix<double,4,5> > staMat(aMat);
//輸出
for (int i = 0; i < staMat.size(); i++)
std::cout << *(staMat.data() + i) << " ";
std::cout << std::endl << std::endl;
//動態矩陣,執行時確定 MatrixXd
Map<MatrixXd> dymMat(aMat,4,5);
//輸出,應該和上面一致
for (int i = 0; i < dymMat.size(); i++)
std::cout << *(dymMat.data() + i) << " ";
std::cout << std::endl << std::endl;
//Matrix中的資料存在一維陣列中,預設是行優先的格式,即一行行的存
//data()返回Matrix中的指標
dymMat.data();
矩陣基礎操作
eigen過載了基礎的+ - * / += -= = /= 可以表示標量和矩陣或者矩陣和矩陣
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
//單個取值,單個賦值
double value00 = staMat(0,0);
double value10 = staMat(1,0);
staMat(0,0) = 100;
std::cout << value00 <<value10<<std::endl;
std::cout <<staMat<<std::endl<<std::endl;
//加減乘除示例 Matrix2d 等同於 Matrix<double,2,2>
Matrix2d a;
a << 1, 2,
3, 4;
MatrixXd b(2,2);
b << 2, 3,
1, 4;
Matrix2d c = a + b;
std::cout<< c<<std::endl<<std::endl;
c = a - b;
std::cout<<c<<std::endl<<std::endl;
c = a * 2;
std::cout<<c<<std::endl<<std::endl;
c = 2.5 * a;
std::cout<<c<<std::endl<<std::endl;
c = a / 2;
std::cout<<c<<std::endl<<std::endl;
c = a * b;
std::cout<<c<<std::endl<<std::endl;
點積和叉積
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
//點積、叉積(針對向量的)
Vector3d v(1,2,3);
Vector3d w(0,1,2);
std::cout<<v.dot(w)<<std::endl<<std::endl;
std::cout<<w.cross(v)<<std::endl<<std::endl;
}
*/
轉置、伴隨、行列式、逆矩陣
小矩陣(4 * 4及以下)eigen會自動優化,預設採用LU分解,效率不高
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
Matrix2d c;
c << 1, 2,
3, 4;
//轉置、伴隨
std::cout<<c<<std::endl<<std::endl;
std::cout<<"轉置\n"<<c.transpose()<<std::endl<<std::endl;
std::cout<<"伴隨\n"<<c.adjoint()<<std::endl<<std::endl;
//逆矩陣、行列式
std::cout << "行列式: " << c.determinant() << std::endl;
std::cout << "逆矩陣\n" << c.inverse() << std::endl;
}
計算特徵值和特徵向量
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
//特徵向量、特徵值
std::cout << "Here is the matrix A:\n" << a << std::endl;
SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
if (eigensolver.info() != Success) abort();
std::cout << "特徵值:\n" << eigensolver.eigenvalues() << std::endl;
std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
<< "corresponding to these eigenvalues:\n"
<< eigensolver.eigenvectors() << std::endl;
}
解線性方程
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
//線性方程求解 Ax =B;
Matrix4d A;
A << 2,-1,-1,1,
1,1,-2,1,
4,-6,2,-2,
3,6,-9,7;
Vector4d B(2,4,4,9);
Vector4d x = A.colPivHouseholderQr().solve(B);
Vector4d x2 = A.llt().solve(B);
Vector4d x3 = A.ldlt().solve(B);
std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
}
除了colPivHouseholderQr、LLT、LDLT,還有以下的函式可以求解線性方程組,請注意精度和速度: 解小矩陣(4*4)基本沒有速度差別
最小二乘求解
最小二乘求解有兩種方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩陣速度沒有區別,jacobiSvd可能更快,大矩陣最好用colPivHouseholderQr
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf A1 = MatrixXf::Random(3, 2);
std::cout << "Here is the matrix A:\n" << A1 << std::endl;
VectorXf b1 = VectorXf::Random(3);
std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
//jacobiSvd 方式:Slow (but fast for small matrices)
std::cout << "The least-squares solution is:\n"
<< A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
//colPivHouseholderQr方法:fast
std::cout << "The least-squares solution is:\n"
<< A1.colPivHouseholderQr().solve(b1) << std::endl;
}
稀疏矩陣
稀疏矩陣的標頭檔案包括:
#include
typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries); //estimation_of_entries是預估的條目
for(...)
{
tripletList.push_back(T(i,j,v_ij));//第 i,j個有值的位置的值
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!
2.直接將已知的非0值插入
SparseMatrix<double> mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
// i,j 個非零值 v_ij != 0
mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional
稀疏矩陣支援大部分一元和二元運算:
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
二元運算中,稀疏矩陣和普通矩陣可以混合使用
//dm表示普通矩陣
dm2 = sm1 + dm1;
也支援計算轉置矩陣和伴隨矩陣
參考以下連結