TensorFlow多通道卷積技術的演示
阿新 • • 發佈:2019-02-03
import cifar10_input import tensorflow as tf import numpy as np batch_size = 128 data_dir = '/tmp/cifar10_data/cifar-10-batches-bin' print("begin") images_train, labels_train = cifar10_input.inputs(eval_data = False,data_dir = data_dir, batch_size = batch_size) images_test, labels_test = cifar10_input.inputs(eval_data = True, data_dir = data_dir, batch_size = batch_size) print("begin data") def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def avg_pool_6x6(x): return tf.nn.avg_pool(x, ksize=[1, 6, 6, 1], strides=[1, 6, 6, 1], padding='SAME') # tf Graph Input x = tf.placeholder(tf.float32, [None, 24,24,3]) # cifar data image of shape 24*24*3 y = tf.placeholder(tf.float32, [None, 10]) # 0-9 數字=> 10 classes W_conv1 = weight_variable([5, 5, 3, 64]) b_conv1 = bias_variable([64]) x_image = tf.reshape(x, [-1,24,24,3]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) #######################################################多卷積核 W_conv2_5x5 = weight_variable([5, 5, 64, 64]) b_conv2_5x5 = bias_variable([64]) W_conv2_7x7 = weight_variable([7, 7, 64, 64]) b_conv2_7x7 = bias_variable([64]) W_conv2_3x3 = weight_variable([3, 3, 64, 64]) b_conv2_3x3 = bias_variable([64]) W_conv2_1x1 = weight_variable([3, 3, 64, 64]) b_conv2_1x1 = bias_variable([64]) h_conv2_1x1 = tf.nn.relu(conv2d(h_pool1, W_conv2_1x1) + b_conv2_1x1) h_conv2_3x3 = tf.nn.relu(conv2d(h_pool1, W_conv2_3x3) + b_conv2_3x3) h_conv2_5x5 = tf.nn.relu(conv2d(h_pool1, W_conv2_5x5) + b_conv2_5x5) h_conv2_7x7 = tf.nn.relu(conv2d(h_pool1, W_conv2_7x7) + b_conv2_7x7) h_conv2 = tf.concat([h_conv2_5x5,h_conv2_7x7,h_conv2_3x3,h_conv2_1x1],3) #######################################################單卷積核 #W_conv2 = weight_variable([5, 5, 64, 64]) #b_conv2 = bias_variable([64]) # #h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) ####################################################### W_conv3 = weight_variable([5, 5, 256, 10]) b_conv3 = bias_variable([10]) h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3) nt_hpool3=avg_pool_6x6(h_conv3)#10 nt_hpool3_flat = tf.reshape(nt_hpool3, [-1, 10]) y_conv=tf.nn.softmax(nt_hpool3_flat) cross_entropy = -tf.reduce_sum(y*tf.log(y_conv)) #不同的優化方法測測效果 #train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #train_step = tf.train.AdagradOptimizer(1e-5).minimize(cross_entropy) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess = tf.Session() sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess=sess) for i in range(15000):#20000 image_batch, label_batch = sess.run([images_train, labels_train]) label_b = np.eye(10,dtype=float)[label_batch] #one hot train_step.run(feed_dict={x:image_batch, y: label_b},session=sess) if i%200 == 0: train_accuracy = accuracy.eval(feed_dict={ x:image_batch, y: label_b},session=sess) print( "step %d, training accuracy %g"%(i, train_accuracy)) image_batch, label_batch = sess.run([images_test, labels_test]) label_b = np.eye(10,dtype=float)[label_batch]#one hot print ("finished! test accuracy %g"%accuracy.eval(feed_dict={ x:image_batch, y: label_b},session=sess))