人臉實時情緒與性別識別
阿新 • • 發佈:2019-02-04
最近弄一個情緒識別與性別識別的東東。
opencv + keras
opencv用於人臉檢測
keras用於訓練出識別模型
資料集用於kaggle的(FER2013)
CNN進行訓練。
程式碼如下:
import cv2
import sys
import json
import time
import numpy as np
from keras.models import model_from_json
from keras.models import load_model
emotion_labels = ['angry', 'fear', 'happy', 'sad' , 'surprise', 'neutral']
gender_labels = {0: 'womam', 1: 'man'}
#cascPath = sys.argv[1]
faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
# load json and create model arch
json_file = open('model.json','r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
gender_classifier = load_model('model/gender/simple_CNN.81-0.96.hdf5' )
# load weights into new model
model.load_weights('model.h5')
def overlay_memeface(probs):
emotion = emotion_labels[np.argmax(probs)]
return emotion
def predict_emotion(face_image_gray): # a single cropped face
resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
# cv2.imwrite(str(index)+'.png', resized_img)
image = resized_img.reshape(1, 1, 48, 48)
list_of_list = model.predict(image, batch_size=1, verbose=1)
angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
return [angry, fear, happy, sad, surprise, neutral]
def predict_gender(face_image_gray):
resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
# cv2.imwrite(str(index)+'.png', resized_img)
image = resized_img.reshape(1, 48, 48, 3)
gender_label_arg = np.argmax(gender_classifier.predict(image))
gender = gender_labels[gender_label_arg]
return gender
video_capture = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)
#img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
#flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
emotions = []
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
face_image_gray = img_gray[y:y+h, x:x+w]
face_image = frame[y:y+h, x:x+w]
print(face_image_gray.shape)
#face = np.expand_dims(face_image_gray, 0)
#face = face / 255.0
#gender_label_arg = np.argmax(gender_classifier.predict(face))
# gender = gender_labels[gender_label_arg]
gender = predict_gender(face_image)
emotion = overlay_memeface(predict_emotion(face_image_gray))
print(predict_emotion(face_image_gray))
print(emotion)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
#angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)
#with open('emotion.txt', 'a') as f:
#f.write('{},{},{},{},{},{},{}\n'.format(time.time(), angry, fear, happy, sad, surprise, neutral))
cv2.putText(frame, gender, (x, y - 30), cv2.FONT_HERSHEY_SIMPLEX, .7, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(frame, emotion, (x + 90, y - 30), cv2.FONT_HERSHEY_SIMPLEX, .7, (255, 0, 0), 1, cv2.LINE_AA)
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()
結果如下:
長得醜請別噴,,,,,,