1. 程式人生 > >人臉實時情緒與性別識別

人臉實時情緒與性別識別

最近弄一個情緒識別與性別識別的東東。
opencv + keras
opencv用於人臉檢測
keras用於訓練出識別模型

資料集用於kaggle的(FER2013)

CNN進行訓練。

程式碼如下:

import cv2
import sys
import json
import time
import numpy as np
from keras.models import model_from_json
from keras.models import load_model


emotion_labels = ['angry', 'fear', 'happy', 'sad'
, 'surprise', 'neutral'] gender_labels = {0: 'womam', 1: 'man'} #cascPath = sys.argv[1] faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # load json and create model arch json_file = open('model.json','r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) gender_classifier = load_model('model/gender/simple_CNN.81-0.96.hdf5'
) # load weights into new model model.load_weights('model.h5') def overlay_memeface(probs): emotion = emotion_labels[np.argmax(probs)] return emotion def predict_emotion(face_image_gray): # a single cropped face resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA) # cv2.imwrite(str(index)+'.png', resized_img)
image = resized_img.reshape(1, 1, 48, 48) list_of_list = model.predict(image, batch_size=1, verbose=1) angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst] return [angry, fear, happy, sad, surprise, neutral] def predict_gender(face_image_gray): resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA) # cv2.imwrite(str(index)+'.png', resized_img) image = resized_img.reshape(1, 48, 48, 3) gender_label_arg = np.argmax(gender_classifier.predict(image)) gender = gender_labels[gender_label_arg] return gender video_capture = cv2.VideoCapture(0) while True: # Capture frame-by-frame ret, frame = video_capture.read() img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1) #img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( img_gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), #flags=cv2.cv.CV_HAAR_SCALE_IMAGE ) emotions = [] # Draw a rectangle around the faces for (x, y, w, h) in faces: face_image_gray = img_gray[y:y+h, x:x+w] face_image = frame[y:y+h, x:x+w] print(face_image_gray.shape) #face = np.expand_dims(face_image_gray, 0) #face = face / 255.0 #gender_label_arg = np.argmax(gender_classifier.predict(face)) # gender = gender_labels[gender_label_arg] gender = predict_gender(face_image) emotion = overlay_memeface(predict_emotion(face_image_gray)) print(predict_emotion(face_image_gray)) print(emotion) cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) #angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray) #with open('emotion.txt', 'a') as f: #f.write('{},{},{},{},{},{},{}\n'.format(time.time(), angry, fear, happy, sad, surprise, neutral)) cv2.putText(frame, gender, (x, y - 30), cv2.FONT_HERSHEY_SIMPLEX, .7, (0, 255, 0), 1, cv2.LINE_AA) cv2.putText(frame, emotion, (x + 90, y - 30), cv2.FONT_HERSHEY_SIMPLEX, .7, (255, 0, 0), 1, cv2.LINE_AA) # Display the resulting frame cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()

結果如下:

這裡寫圖片描述

長得醜請別噴,,,,,,