1. 程式人生 > >二維幾何基礎 (模板)

二維幾何基礎 (模板)

這裡總結一下二維幾何基礎知識!

常用定義:

//定義點的型別 
struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }  //建構函式,方便程式碼編寫 
};

typedef Point Vector;  //從程式實現上,Vector只是Point的別名 

//向量 + 向量 = 向量 ,點 + 向量 = 點
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
//點 - 點 = 向量
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
//向量 * 數 = 向量 
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
//向量 / 數 = 向量 
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}


點積:

//點積 
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求點積 
double Length(Vector A) { return sqrt(Dot(A, A)); }			 //求向量長度 
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之間的夾角 


叉積:

//叉積 
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉積 
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根據叉積求三角形面積的兩倍 


旋轉:

//旋轉 
Vector Rotate(Vector A, double rad) {//rad是弧度 
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 


向量的單位法線:

//向量單位法向量,呼叫前請確保A不是零向量 
Vector Normal(Vector A) {  
    double L = Length(A);  
    return Vector(-A.y/L, A.x/L);  
}


二直線交點:

//二直線交點(引數式) 
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 


點到直線距離 :

//點到直線距離  
double DistanceToLine(Point P, Point A, Point B) {  
    Vector v1 = B-A, v2 = P - A;  
    return fabs(Cross(v1,v2) / Length(v1));  //如果不取絕對值,得到的是有向距離 
}  


點到線段距離  :

//點到線段距離  
double DistanceToSegment(Point P, Point A, Point B) {  
    if(A==B) return Length(P-A);  
    Vector v1 = B - A, v2 = P - A, v3 = P - B;  
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);  
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);  
    else return fabs(Cross(v1, v2)) / Length(v1);  
}  


點在直線上的投影:

//點在直線上的投影
Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) ); 
}  


線段相交判定:

//線段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 


判斷一個點是否在一條線段上:

//判斷一個點是否在一條線段上
bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 


多邊形面積:

//多邊形面積  
double ConvexPolygonArea(Point* p, int n) {  
    double area = 0;  
    for(int i = 1; i < n-1; i++)  
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);  
    return area / 2;  
}  


總結:

//定義點的型別 
struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }  //建構函式,方便程式碼編寫 
};

typedef Point Vector;  //從程式實現上,Vector只是Point的別名 

//向量 + 向量 = 向量 ,點 + 向量 = 點
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
//點 - 點 = 向量
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
//向量 * 數 = 向量 
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
//向量 / 數 = 向量 
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}

//點積 
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求點積 
double Length(Vector A) { return sqrt(Dot(A, A)); }			 //求向量長度 
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之間的夾角 

//叉積 
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉積 
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根據叉積求三角形面積的兩倍 

//旋轉 
Vector Rotate(Vector A, double rad) {//rad是弧度 
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 

//向量單位法向量,呼叫前請確保A不是零向量 
Vector Normal(Vector A) {  
    double L = Length(A);  
    return Vector(-A.y/L, A.x/L);  
}

//二直線交點(引數式) 
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 

//點到直線距離  
double DistanceToLine(Point P, Point A, Point B) {  
    Vector v1 = B-A, v2 = P - A;  
    return fabs(Cross(v1,v2) / Length(v1));  //如果不取絕對值,得到的是有向距離 
}  
  
//點到線段距離  
double DistanceToSegment(Point P, Point A, Point B) {  
    if(A==B) return Length(P-A);  
    Vector v1 = B - A, v2 = P - A, v3 = P - B;  
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);  
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);  
    else return fabs(Cross(v1, v2)) / Length(v1);  
}  
  
//點在直線上的投影
Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) ); 
}  

//線段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 

//判斷一個點是否在一條線段上
bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 

//多邊形面積  
double ConvexPolygonArea(Point* p, int n) {  
    double area = 0;  
    for(int i = 1; i < n-1; i++)  
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);  
    return area / 2;  
}  


無註釋純淨版微笑

struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }  
};

typedef Point Vector;  

Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } 
double Length(Vector A) { return sqrt(Dot(A, A)); }		
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } 

double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }

Vector Rotate(Vector A, double rad) {
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 

Vector Normal(Vector A) {  
    double L = Length(A);  
    return Vector(-A.y/L, A.x/L);  
}

Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 
 
double DistanceToLine(Point P, Point A, Point B) {  
    Vector v1 = B-A, v2 = P - A;  
    return fabs(Cross(v1,v2) / Length(v1)); 
}  

double DistanceToSegment(Point P, Point A, Point B) {  
    if(A==B) return Length(P-A);  
    Vector v1 = B - A, v2 = P - A, v3 = P - B;  
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);  
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);  
    else return fabs(Cross(v1, v2)) / Length(v1);  
}  

Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) ); 
}  

bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 

bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 

double ConvexPolygonArea(Point* p, int n) {  
    double area = 0;  
    for(int i = 1; i < n-1; i++)  
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);  
    return area / 2;  
}