舊版spark(1.6版本) 將rdd動態轉為dataframe
阿新 • • 發佈:2019-02-05
前言
舊版本spark不能直接讀取csv轉為df,沒有spark.read.option(“header”, “true”).csv這麼簡單的方法直接將第一行作為df的列名,只能現將資料讀取為rdd,然後通過map和todf方法轉為df,如果csv的列數很多的話用如Array((1,2..))即Arrar(元組)建立的話很麻煩,本文解決如何用舊版spark讀取多列txt檔案轉為df
1、新版
為了直觀明白本文的目的,先看一下新版spark如何實現
1.1 資料
data.csv,如圖:
1.2 程式碼
新版程式碼較簡單,直接通過spark.read.option(“header”, “true”).csv(data_path)即可實現!
package com.dkl.leanring.spark.sql
import org.apache.spark.sql.SparkSession
object Txt2Df {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("Txt2Df").master("local").getOrCreate()
val data_path = "files/data.csv"
val df = spark.read.option("header" , "true").csv(data_path)
df.show()
}
}
1.3 結果
+----+----+----+----+----+
|col1|col2|col3|col4|col5|
+----+----+----+----+----+
| 11| 12| 13| 14| 15|
| 21| 22| 23| 24| 25|
| 31| 32| 33| 34| 35|
| 41| 42| 43| 44| 45|
+----+----+----+----+----+
2、舊版
2.1 資料
data.txt
col1,col2,col3,col4,col5
11,12,13,14,15
21,22,23,24,25
31,32,33,34,35
41,42,43,44,45
其中列數可任意指定
2.2 程式碼
package com.dkl.leanring.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
object Rdd2Df {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Rdd2Df").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val data_path = "files/data.txt"
val data = sc.textFile(data_path)
val arr = data.collect()
//arr1為除去第一行即列名的資料
val arr1 = arr.slice(1, arr.length)
val rdd = sc.parallelize(arr1)
//列名
val schema = StructType(arr(0).split(",").map(fieldName => StructField(fieldName, StringType, true)))
val rowRDD = rdd.map(_.split(",")).map(p => Row(p: _*))
sqlContext.createDataFrame(rowRDD, schema).show()
}
}
2.3 結果
+----+----+----+----+----+
|col1|col2|col3|col4|col5|
+----+----+----+----+----+
| 11| 12| 13| 14| 15|
| 21| 22| 23| 24| 25|
| 31| 32| 33| 34| 35|
| 41| 42| 43| 44| 45|
+----+----+----+----+----+
根據結果看,符合逾期的效果!